+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Biomechanics of Living Organs

  • ID: 3946988
  • Book
  • June 2017
  • Region: Global
  • 602 Pages
  • Elsevier Science and Technology
1 of 3

Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ.

Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods.

When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model.

Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics.

  • Covers hyper elastic frameworks for large tissue deformations
  • Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue
  • Evaluates the physical meaning of proposed energy functions

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Note: Product cover images may vary from those shown
2 of 3

Part 1: Constitutive laws for biological living tissues 1. Hyperelasticity Modeling for Incompressible Passive Biological Tissues 2. Current Hyperelastic Models for Contractile Tissues: Application to Cardiovascular Mechanics 3. Visco-hyperelastic strain energy function 4. Constitutive Formulations for Soft Tissue Growth and Remodeling 5. Strain energy function for damaged tissues

Part 2: Passive soft organs 6. Brain
Biomechanical modeling of brain soft tissues for medical applications 7. Oesophagus
Modeling of esophageal structure and function in health and disease 8. Aorta
Mechanical properties, histology, and biomechanical modeling 9. Arteries and Coronaries Arterial
Wall Stiffness and Atherogenesis in Human Coronaries 10. Breast
Clinical applications of breast biomechanics 11. Liver
Non linear Biomechanical model of the Liver 12. Abdomen
Mechanical modeling and clinical applications 13. Small Intestine 14. Bladder/prostate/rectum
Biomechanical Models of the Mobility of Pelvic Organs in the Context of Prostate Radiotherapy 15. Uterus
Biomechanical modeling of uterus. Application to a childbirth simulation 16. Skin
Skin mechanics

Part 3: Active soft organs 17. Skeletal muscle
Three-dimensional modeling of active muscle tissue: The why, the how, and the future 18. Face
Computational modelling of the passive and active components of the face 19. Tongue
Human tongue biomechanical modeling 20. Upper airways
FRANK: a Hybrid 3D Biomechanical Model of the Head and Neck 21. Heart
Adaptive reorientation of myofiber orientation in a model of biventricular cardiac mechanics: the effect of triaxial active stress, passive shear stiffness, and activation sequence

Part 4: Musculo-skeletal models 22. Spine
Relative contribution of structure and materials in the biomechanical behavior of the human spine 23. Thigh
Modeling of the Thigh: a 3D deformable approach considering muscle interactions 24. Calf
Subject-specific computational prediction of the effects of elastic compression in the calf 25. Foot
Biomechanical modeling of the foot

Note: Product cover images may vary from those shown
3 of 3


4 of 3
Payan, Yohan
Yohan Payan leads the CAMI team (Computer Assisted Medical Interventions) of TIMC-IMAG Laboratory. With an engineering background, his main research interests concern the biomechanical modelling of soft tissues. He received the 2012 Senior Prize of the French Biomechanics Society. During the last fifteen years, he has co-supervised 25 PhD students, written close to 300 papers and edited two books focused on biomechanics for CAMI. During the same period, he spent two sabbatical years in Chile (Univ. of Santiago) and Canada (UBC, Vancouver) and was invited as a keynote speaker in more than twenty international conferences.
Ohayon, Jacques
Jacques Ohayon received his MSc degree in Biomechanical Engineering at University of Compiègne (UTC) in France in 1982 and his PhD in Cardiac Mechanics in 1985 at the University of Paris 12 Val-de-Marne (UPVM). Since 2003, he performs his research at the Laboratory TIMC-CNRS UMR 5525 of Grenoble in the group Cellular/Tissular Dynamics and Functional Microscopy (DyCTiM). From 2006 to 2007 he was an invited senior scientist at the Laboratory of Integrative Cardiovascular Imaging Science at the NIH, USA. His current research interests are in biomechanics of atherosclerotic plaque, plaque detection, plaque rupture prediction, plaque growth and development of new clinical tools for imaging the elasticity of vulnerable plaque based on clinical OCT, MRI and IVUS sequences.
Note: Product cover images may vary from those shown