+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Spacecraft Dynamics and Control. Aerospace Engineering

  • ID: 4335113
  • Book
  • March 2018
  • 790 Pages
  • Elsevier Science and Technology
1 of 3

Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation.

The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems.

  • The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control
  • Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability
  • Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations
  • Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations
  • The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor
  • Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application
  • Simulated results and their graphical plots are developed through MATLAB/Simulink code

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Note: Product cover images may vary from those shown
2 of 3
1. Introduction
2. Attitude Representation
3. Orbital Dynamics
4. The Environment: Perturbing Forces and Torques
5. Perturbed Orbital Dynamics
6. Attitude Kinematics: Modeling and Feedback
7. Attitude Dynamics: Modeling and Control
8. Orbit and Attitude Sensors
9. Orbit and Attitude Actuators
10. Attitude Determination
11. Orbital Control and Prediction Problems
12. Attitude Control: A Case Study
13. Introduction to Dynamic Systems
14. Introduction to Embedded Model Control
Note: Product cover images may vary from those shown
3 of 3
Canuto, Enrico
Enrico Canuto has designed the drag-free control of the successful European GOCE spacecraft. Recently he has studied and proved the integrated formation, drag-free and attitude control of the European Next Generation Gravity Mission. He also contributed to conception, design and implementation of on-ground test facilities for space qualification, among them the thrust stand Nanobalance. He has published several journal papers on the spacecraft control, based on the Embedded Model Methodology, which developed and applied to several applications. He has taught a course on Aerospace modelling and control at Politecnico di Torino.
Novara, Carlo
Carlo Novara is an Associate Professor at Politecnico di Torino. He was a visiting researcher at the University of California at Berkeley in 2001 and 2004. He is the author or co-author of about 100 scientific publications in international journals and conference proceedings. He has been involved in several national and international projects and in several research contracts in collaboration with Italian and European companies. He has worked for more than 15 years in the fields of nonlinear system identification and control and, recently, he is bringing his experience in these fields to the aerospace sector. His current research interests include satellite attitude, drag free and formation control. He is teaching a course on Aerospace modelling and control at Politecnico di Torino.
Carlucci, Donato
Donato Carlucci is an Associate Professor at Politecnico di Torino. He is the author or co-author of scientific publications on applied nonlinear systems control. He has been involved in national and international projects in collaboration with Italian and European industries. He has worked for more than 40 years in the fields of nonlinear system control including aerospace systems. His current research interests include satellite attitude control. He is teaching courses on Automation and Production Systems at Politecnico di Torino
Montenegro, Carlos Perez
Carlos Norberto Perez Montenegro is postdoctoral research assistant at Politecnico di Torino, Italy. His research interests include automatic control algorithms on different platforms, use of programming environments for microcontrollers, programmable logic controllers (PLC), inter alia.
Massotti, Luca
Luca Massotti received the Laurea degree in Aerospace Engineering from the Politecnico di Torino (Turin, I), in 2000, and the Ph.D. in Aerospace Engineering from the Aeronautical and Space Department of the Politecnico di Torino (Turin, I), in 2004. In 2001-2002, he was visiting researcher at West Virginia University (WVU, US) to study aircraft modelling and Neural Network controllers.
After the Ph.D. degree, in 2004 he joined Thales Alenia Space in Turin (I) as an engineering consultant for metrology and AOCS. From 2005 to 2007 he was a Post Doctoral Researcher at the Earth Observation Programmes Department of the European Space Agency (ESA) at ESTEC facility, in The Netherlands. He is currently a consultant at ESA/ESTEC, Earth Observation Programmes Directorate - Future Missions division, with Rhea B.V. since 2007. He is the author of co-author of more than 80 scientific publications in international journals, conference proceedings and articles on books. He has been working on European projects of Earth Explorers satellites (in particular on Biomass, selected as Earth Explorer 7, and FLEX, selected as Earth Explorer 8), GEO High Resolution and GOCE follow-on missions. He is actively involved in the ESA Technology Research Programme, either in the preparation or the review phases, in the domain of micro-propulsion, laser metrology and AOCS. He has been appointed as coordinator of the Inter-Agency Working Group between ESA and NASA on gravity topics, and he is actively involved with the Center for Gravitational Experiments in Wuhan (China). His research interests cover aircraft & satellite modelling and simulation, nonlinear and adaptive control design, artificial intelligence techniques (NNs), Nano-balancing, AOCS, Drag Free and Attitude Control for scientific satellites.
Dr. Massotti is a Member of the AIAA GNC Technical Committee, Senior AIAA Member, and lecturer at several universities and research centers (e.g. Giessen University (D), Politecnico di Torino (I), FOTEC (A) and HUST University (China)).
Note: Product cover images may vary from those shown