+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Micro and Nano Scale NMR. Technologies and Systems. Edition No. 1. Advanced Micro and Nanosystems

  • Book

  • 448 Pages
  • June 2018
  • John Wiley and Sons Ltd
  • ID: 4403403
This must-have book is the first self-contained summary of recent developments in the field of microscale nuclear magnetic resonance hardware, covering the entire technology from miniaturized detectors, the signal processing chain, and detection sequences. Chapters cover the latest advances in interventional NMR and implantable NMR sensors, as well as in using CMOS technology to manufacture miniaturized, highly scalable NMR detectors for NMR microscopy and high-throughput arrays of NMR spectroscopy detectors.

Table of Contents

Editor’s Preface xiii

Series Editor’s Preface xv

1 Magnets for Small-Scale and Portable NMR 1
Bernhard Blümich, Christian Rehorn, and Wasif Zia

1.1 Introduction 1

1.2 Compact Permanent Magnets 3

1.2.1 Types of Permanent Magnets 3

1.2.2 Stray-Field Magnets 5

1.2.2.1 Classification 5

1.2.2.2 Magnets for 1D and 2D Imaging 6

1.2.2.3 Magnets for Bulk-Volume Analysis 7

1.2.3 Center-Field Magnets 9

1.3 Magnet Development 10

1.3.1 PermanentMagnet Materials 10

1.3.2 Magnet Construction and Passive Shimming 11

1.3.3 Overview of Center-field Magnets for Compact NMR 11

1.3.4 Strategies for Passive Shimming 13

1.3.5 Shim Coils for Compact NMR Magnets 14

1.4 Concluding Remarks 16

References 16

2 Compact Modeling Techniques for Magnetic Resonance Detectors 21
Suleman Shakil,Mikhail Kudryavtsev, Tamara Bechtold, Andreas Greiner,mand Jan G. Korvink

2.1 Introduction 21

2.2 Fast Simulation of EPR Resonators Based on Model OrdermReduction 22

2.2.1 The Discretized Maxwell’s Equations 23

2.2.2 Model Order Reduction 29

2.2.3 Structure-PreservingModel Order Reduction 33

2.2.4 Planar Coil EPR Resonator 34

2.3 System Level Simulation of a Magnetic Resonance Microsensor bymMeans of ParametricModel Order Reduction 39

2.3.1 Model Description 40

2.3.2 ParametricModel Order Reduction 43

2.3.3 Compact Model Simulation Results 46

2.3.4 Device–Circuit Co-simulation 46

2.4 Conclusions and Outlook 54

References 55

3 Microarrays andMicroelectronics for Magnetic Resonance 59
Oliver Gruschke, Mazin Jouda, and Jan G. Korvink

3.1 Introduction 59

3.2 Microarrays for Magnetic Resonance 59

3.2.1 Theoretical Background 59

3.2.2 Microtechnologies for MR Array Fabrication 61

3.3 Integrated Circuits 63

3.4 CMOS Frequency Division Multiplexer 64

3.4.1 The Low-Noise Amplifier 64

3.4.2 The Frequency Mixer 65

3.4.3 The Bandpass Filter 66

3.4.4 Measurements 67

3.4.4.1 MRI Experiment 68

3.5 Summary 70

References 70

4 Wave Guides for Micromagnetic Resonance 75
Ali Yilmaz andMarcel Utz

4.1 Introduction 75

4.2 Wave Guides: Theoretical Basics 78

4.2.1 Propagating Electromagnetic Modes 78

4.2.2 Characteristic Impedance and Transport Characteristics 79

4.2.3 Theory of TEMWave Modes 79

4.2.4 Modeling of TEM Modes 80

4.2.4.1 Losses in Transmission Lines 82

4.2.5 Magnetic Fields in Planar TEM Transmission Lines 82

4.2.6 Transmission Line Detectors and Resonators 83

4.3 Designs and Applications 84

4.3.1 Microstrip NMR Probes in MRI 84

4.3.2 Microfluidic NMR 87

4.3.3 Planar Detectors 87

4.3.4 Microstrip Detectors 88

4.3.5 Nonresonant Detectors 90

4.3.6 Stripline Detectors 92

4.3.7 Parallel Plate Transmission Lines 96

4.3.8 Applications in Solid-State Physics 97

4.3.9 Wave Guides for Dynamic Nuclear Polarization 98

References 100

5 Innovative Coil Fabrication Techniques for Miniaturized  Magnetic Resonance Detectors 109
Jan Korvink, Vlad Badilita, DarioMager, Oliver Gruschke, Nils Spengler, Shyam Sundar Adhikari Parenky, UlrikeWallrabe, andMarkusMeissner

5.1 Wire-Bonding – A New Means to Miniaturize MR Detectors 109

5.2 Microcoil Inserts for Magic Angle Spinning 114

5.2.1 Backbone of the Magic Angle Coil Spinning (MACS) Technique 115

5.2.2 Cost of Inductive Coupling 116

5.2.3 Demonstrating the Improved Sensitivity of the MACS Technique from NMR Experiments 118

5.2.4 Microfabricated MACS Inserts 118

5.2.5 Double-Resonant MACS Insert 120

5.3 Micro-Helmholtz Coil Pairs 123

5.3.1 Helmholtz Coils in Magnetic Resonance 123

5.3.2 Magnetic Field Profile 124

5.3.3 Micromachining of Miniaturized Helmholtz Pairs 125

5.4 High Filling Factor Microcoils 128

5.4.1 Introduction 128

5.4.2 Fabrication 130

5.4.3 Results 130

5.5 Coil Fabrication Using Inks 130

References 136

6 IC-Based and IC-Assisted ;;NMR Detectors 143
Jonas Handwerker and Jens Anders

6.1 Technological Considerations and Device Models 143

6.1.1 ComplementaryMetal Oxide Semiconductor Technologies 143

6.1.2 Bipolar ComplementaryMetal Oxide Semiconductor Technologies 148

6.2 Monolithic Transceiver Electronics for NMR Applications 151

6.2.1 Optimal Integrated RF Front-ends for μNMR Applications 151

6.2.2 Designing NMR Receivers in CMOS and BiCMOS 155

6.2.2.1 LNAs forWidebandand Applications 156

6.2.2.2 LNAs for Narrowband Applications 163

6.2.3 Co-design of the Detection Coil and the LNA for SNR Optimization 167

6.3 Overview of the State-of-the-Art in IC-Based and IC-Assisted μNMR 167

6.3.1 Portable NMR Systems 167

6.3.2 NMR Spectroscopy Systems 170

6.3.3 MR Imaging and Microscopy Systems 171

6.3.4 Intravascular NMR Systems 173

6.4 Summary and Conclusion 174

References 174

7 MR Imaging of Flow on theMicroscale 179
Dieter Suter and Daniel Edelhoff

7.1 Introduction 179

7.2 Methods – Flow Imaging 179

7.2.1 Time of Flight 180

7.2.2 Phase Contrast 181

7.2.3 Mean Flow 182

7.2.4 Limitations 182

7.2.4.1 Velocity Range 183

7.2.4.2 Temporal Stability 184

7.2.4.3 Spatial Resolution 184

7.3 Applications of Microscopic Flow Imaging 185

7.3.1 Experimental Setup 186

7.3.2 Characterization of Liquid Exchange in Aneurysm Models 186

7.3.2.1 AneurysmModels 186

7.3.2.2 Methods 186

7.3.2.3 Results 187

7.3.2.4 Conclusion 189

7.3.3 Phase–Contrast Measurements with Constant Flow 189

7.3.3.1 Laminar Flow in a Pipe 189

7.3.3.2 Flow andWall Shear Stress in an Aneurysm Model 190

7.3.4 Pulsatile Flow 192

7.4 Discussion 194

Acknowledgments 195

References 195

8 Efficient Pulse Sequences for NMRMicroscopy 199
Jürgen Hennig, Katharina Göbel-Guéniot, Linnéa Hesse, and Jochen Leupold

8.1 Introduction 199

8.2 Spatial Encoding 200

8.2.1 k-Space and More 200

8.2.2 Slice Selection 204

8.3 Contrast Mechanisms 206

8.3.1 T1-relaxation 206

8.3.2 T2-relaxation 207

8.3.3 T2*-decay 207

8.4 Basic Pulse Sequences 211

8.4.1 General Considerations 211

8.4.2 Spin Echo Sequences 212

8.4.3 Gradient Echo-Based Imaging 214

8.4.3.1 FLASH-Type Gradient Echoes 214

8.4.3.2 EPI 219

8.4.4 Ultrashort TE 220

8.5 Special Contrasts 222

8.5.1 Diffusion 222

8.5.1.1 Diffusion Limit of NMR Microscopy 224

8.5.2 Flow 229

8.5.2.1 Velocity Phase Imaging 229

8.5.2.2 Time-of-Flight Imaging 230

8.5.3 Susceptibility Mapping and QSM 230

References 232

9 Thin-Film Catheter-Based Receivers for Internal MRI 237
Richard R. A. Syms, Evdokia Kardoulaki, and Ian R. Young

9.1 Introduction 237

9.2 Catheter Receivers 237

9.2.1 Internal Imaging 238

9.2.2 Catheter Receiver Designs 238

9.2.3 Elongated Loop Receivers 239

9.2.4 Tuning and Matching 240

9.2.5 B1-Field Decoupling 241

9.2.6 E-Field Decoupling 242

9.3 Thin-Film Catheter Receivers 244

9.3.1 Thin-Film Coils 244

9.3.2 Thin-Film Interconnects 245

9.3.3 MR-Safe Thin Film Interconnects 246

9.4 Thin-Film Device Fabrication 249

9.4.1 Design and Modeling 249

9.4.2 Materials and Fabrication 249

9.4.3 Mechanical Performance 251

9.4.4 Electrical Performance 252

9.5 Magnetic Resonance Imaging 255

9.5.1 Imaging with Resonant Detectors 255

9.5.2 Imaging with EBG Detectors 256

9.5.3 Imaging with MI Detectors 257

9.6 Conclusions 258

Acknowledgments 259

References 259

10 Microcoils for BroadbandMultinuclei Detection 265
Jens Anders and Aldrik H. Velders

10.1 Introduction 265

10.1.1 NMR Microcoils 266

10.1.2 Broadband NMR Microcoils 267

10.2 Microcoil-Based Broadband Probe NMR Spectroscopy 268

10.2.1 Broadband Coil, Chip, and Probe Setup 269

10.2.2 Non-tuned Broadband Planar Transceiver Coil NMR Data 269

10.2.2.1 Homonuclear 1D NMR Experiments 269

10.2.2.2 Heteronuclear 1D NMR Experiments 273

10.2.2.3 Homo- and Heteronuclear 2D NMR Experiments 273

10.2.3 Questions Arising for Broadband NMR 273

10.3 An Engineer’s Answers to the Questions 274

10.3.1 General Remarks 274

10.3.2 Coils 274

10.3.3 Impedance Matching and Front-end Electronics 278

10.3.4 Answers to the Questions 287

10.3.5 Remaining Spectrometer Electronics 289

10.4 Conclusion and Outlook 289

Acknowledgment 290

References 291

11 Microscale Hyperpolarization 297
Sebastian Kiss, Lorenzo Bordonali, Jan G. Korvink, and Neil MacKinnon

11.1 Introduction 297

11.2 Theory 301

11.2.1 Dynamic Nuclear Polarization 301

11.2.1.1 Polarization Transfer and DNP Mechanisms 301

11.2.1.2 DNP Instrumentation 302

11.2.1.3 Challenges in DNP Instrumentation 303

11.2.2 para-Hydrogen-Induced Hyperpolarization 304

11.2.3 Spin-Exchange by Optical Pumping 309

11.3 Microtechnological Approaches 312

11.3.1 DNP 312

11.3.1.1 Microtechnology for High-Field DNP Resonators 314

11.3.1.2 Microresonators for Low- and Intermediate-Field DNP 318

11.3.1.3 Microfluidics and DNP Resonators 322

11.3.2 PHIP 323

11.3.2.1 Gas-Phase Characterization of Reactors and Fluidic Networks 324

11.3.2.2 Micro-PHIP in the Liquid Phase 327

11.3.2.3 SABRE: A Micro-NMR Compatible PHIP Technique? 330

11.3.2.4 Catalyst Solubility inWater 331

11.3.2.5 Quantification 331

11.3.2.6 High-Field SABRE 332

11.3.3 Micro-SEOP for Nuclear Hyperpolarization 333

11.4 Conclusion 337

References 338

12 Small-Volume Hyphenated NMR Techniques 353
Andrew Webb

12.1 Different Modes of Hyphenation 353

12.2 Types of Radio-Frequency Coils Used for Small-Scale Hyphenation 355

12.3 Hyphenation of NMR and Pressure-Driven Microseparations 357

12.3.1 Capillary High-Pressure Liquid Chromatography 357

12.3.2 Capillary Gas Chromatography 358

12.4 Electrically Driven Microseparations 359

12.4.1 Capillary Electrophoresis NMR 360

12.4.2 Capillary Isotachophoresis NMR 362

12.5 Off-Line Hyphenation of Microsamples with MicrocoilmDetection 363

12.6 Continuous Monitoring of In Situ Biological Systems 368

12.7 Studies of Microfluidic Mixing and Reaction Kinetics 368

12.8 Measurement of Flow Profiles in Flow Cells and Microchannels 370

12.9 Conclusion 372

References 372

13 Force-Detected Nuclear Magnetic Resonance 381
Martino Poggio and Benedikt E. Herzog

13.1 Introduction 381

13.2 Motivation 381

13.3 Principle 382

13.4 Force versus Inductive Detection 384

13.5 Early Force-Detected Magnetic Resonance 386

13.6 Single-Electron MRFM 389

13.7 Toward Nano-MRI with Nuclear Spins 390

13.7.1 Improvements to Micro-fabricated Components 391

13.7.2 MRI with Resolution Better than 100nm 391

13.7.3 Nanoscale MRI of Virus Particles 392

13.7.4 Imaging Organic Nanolayers 396

13.8 Paths Toward Continued Improvement 398

13.8.1 Magnetic Field Gradients 398

13.8.2 Mechanical Transducers 400

13.8.3 Measurement Protocols 405

13.8.4 Nano-MRI with a Nanowire Force Sensor 408

13.9 Comparison to Other Techniques 412

13.10 Outlook 414

13.11 Conclusion 416

References 416

Index 421

Authors

Jens Anders University of Ulm, Germany. Jan G. Korvink Karlsruhe Institute of Technology, Germany.