+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Plant Micronutrient Use Efficiency. Molecular and Genomic Perspectives in Crop Plants

  • Book

  • March 2018
  • Elsevier Science and Technology
  • ID: 4414211

Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants presents information on the complex mechanisms regulating micronutrient use efficiency in plants. Understanding this science is essential for the development of new varieties of crop plants that are more resilient to micronutrient stress, as well as plants with increased bioavailable concentrations of essential micronutrients. This book explores the discovery of novel genes and key metabolic pathways associated with micronutrient use efficiency in plants, gives an analyses of the gene expression patterns in plants in response to low and/or high nutrient levels, and investigates the potential functions of these genes and their products.

Strategies to enhance micronutrient use efficiency and stress tolerance, to develop bio-fortified crop, and to improve the sustainable utilization of natural resources are critically evaluated. The book contains both fundamental and advanced information as well as critical commentaries that are useful for those involved in the various fields that make up the plant sciences.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Regulation of Micronutrient Homeostasis and Deficiency 2. Molecular Bases of Iron Accumulation Towards the Development of Iron-Enriched Crops 3. Plant Responses to Iron Deficiency and Toxicity and Iron Use Efficiency in Plants 4. Plant Responses to Copper: Molecular and Regulatory Mechanisms of Copper Uptake, Distribution and Accumulation in Plants 5. The Molecular Genetics of Zinc Uptake and Utilization Efficiency in Crop Plants 6. Plant Response to Boron Deficiency and Boron Use Efficiency in Crop Plants 7. Physiological Importance of Manganese, Cobalt and Nickel and the Improvement of Their Uptake and Utilization by Plants 8. Roles of Molybdenum in Plants and Improvement of Its Acquisition and Use Efficiency  9. Proteomics of Micronutrient Deficiency and Toxicity 10. Oxidative Stress in Relation With Micronutrient 11. Strategies for Increasing Micronutrient Availability in Soil for Plant Uptake 12. Micronutrients Use Efficiency of Crop-Plants Under Changing Climate 13. Micronutrient Malnutrition and Biofortification: Recent Advances and Future Perspectives 14. Genomic Approaches for Micronutrients Biofortification of Rice 15. Progress and Prospects for Micronutrient  Biofortification in Rice/Wheat 16. Crops With Improved Nutritional Content Though Agricultural Biotechnology

Authors

Mohammad Anwar Hossain Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh. Dr. Mohammad Anwar Hossain is a professor in the Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. He received his B.Sc. in Agriculture and M.S. in Genetics and Plant Breeding from Bangladesh Agricultural University, Bangladesh. He also received an M.S. in Agriculture from Kagawa University, Japan in 2008 and a Ph.D. in Abiotic Stress Physiology and Molecular Biology from Ehime University, Japan in 2011 through a Monbukagakusho scholarship. As a JSPS postdoctoral researcher he worked on isolating low phosphorus stress tolerant genes from rice at the university of Tokyo, Japan during the period of 2015-17. His current research interests include the isolation and characterization of abiotic stress responsive genes and proteins, physiological and molecular mechanisms of abiotic stress response and tolerance with special reference to oxidative stress, antioxidants and methylglyoxal metabolism and signaling, generation of stress tolerant and nutrient efficient plants through breeding and biotechnology, and cross-stress tolerance in plants. He has more than 50 peer-reviewed publications and has edited 8 books, including this one, published by CRC press, Springer, and Elsevier.

Affiliations and Expertise
Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh Takehiro Kamiya Laboratory of Plant Nutrient and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan. Dr. Takehiro Kamiya is an Associate Professor at the Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, at The University of Tokyo, Japan. He obtained his PhD, in 2006, from Nagoya University, Japan. After doing his postdoctoral research at the Nagoya University (2006-07), University of Tokyo (2007-10), Aberdeen University (2010-12), he accepted the position of lecturer at the University of Tokyo. Since 2015, he has been an Associate Professor at the University of Tokyo. His current research interests are
understanding of the essential and nonessential element dynamics in plants using ICP-MS and hyperspectral camera. He is also interested
in molecular mechanisms of Casparian strip formation. David Burritt Department of Botany, University of Otago, New Zealand. Dr. David J. Burritt is an Associate Professor in the Department of Botany, The University of Otago, Dunedin, New Zealand. He received his B.Sc. and M.Sc. (hons) in Botany, and his Ph.D. in Plant Biotechnology from The University of Canterbury, Christchurch, New Zealand. His research interests include oxidative stress and redox biology, plant based foods and bioactive molecules, plant breeding and biotechnology, cryopreservation of germplasm, and the stress biology of plants, animals, and algae. He has more than 100 peer-reviewed publications and has edited 3 books for Springer and 3 for Elsevier.

Affiliations and Expertise
Department of Botany, University of Otago, Dunedin, New Zealand Lam-Son Phan Tran Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Japan. Dr. Lam-Son Phan Tran is Head of the Signaling Pathway Research Unit at RIKEN Center for Sustainable Resource Science, Japan. He obtained his M.Sc. in Biotechnology in 1994 and Ph.D. in Biological Sciences in 1997, from Szent Istvan University, Hungary. After doing his postdoctoral research at the National Food Research Institute (1999-2000) and the Nara Institute of Science and Technology of Japan (2001), in October 2001, he joined the Japan International Research Center for Agricultural Sciences to work on the functional analyses of transcription factors and osmosensors in Arabidopsis plants under environmental stresses. In August 2007, he moved to the University of Missouri-Columbia, USA as a Senior Research Scientist to coordinate a research team working to discover soybean genes to be used for genetic engineering of drought-tolerant soybean plants. His current research interests are elucidation of the roles of phytohormones and their interactions in abiotic stress responses, as well as translational genomics of legume crops with the aim to enhance crop productivity under adverse environmental conditions. He has published over 110 peer-reviewed papers with more than 80 research and 30 review articles, contributed 8 book chapters to various book editions published by Springer, Wiley-Blackwell, and American Society of Agronomy, Crop Science Society of America and Soil Science Society of America. In addition to this current book, he has also edited books for Springer Toru Fujiwara Laboratory of Plant Nutrient and Fertilizers, University of Tokyo, Japan. Dr. Toru Fujiwara is a Professor at the Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate
School of Agricultural and Life Sciences, at The University of Tokyo, Japan. He obtained his PhD in 1992 from University of Tokyo, Japan. He worked in several institutions in his early carrier, including Washington University in St. Louis, University of California, Davis, and Cornell University. Since 2011, he is at the current position. He has worked and is presently continuing on a wide range of topics,including plant nutrient transport, long-distance transport of nutrients and macromolecules, regulation of nutrient transport processes, mathematical modeling of nutrient transport, and generation of low nutrient tolerant plants.