MIMO Role in High-speed Communications - Technologies, Markets and Applications

  • ID: 4418511
  • Report
  • Region: Global
  • 136 Pages
  • PracTel Inc
1 of 4

FEATURED COMPANIES

  • AceAxis
  • Broadcom
  • Ericsson
  • Lea Networks
  • Orca
  • Signalion
  • MORE

This report researches advanced technologies and markets for wireless and wired communications systems that are supported by MIMO - Multiple Input/Multiple Output structures - to enhance their performance. It revises and updates earlier issues of the report as well as adds the analysis of latest technologies.

Users’ demand for more efficient networking brought to life many technological innovations. One of them is MIMO, which became very popular in wireless systems - almost all recent and future 3GPP standards use (or will be using) variations of such a technique. MIMO also can be used in wireline systems.

This report is based on the Practel analysis of MIMO-based communications systems, their technologies and markets specifics. Particular, the following industry standards that utilize MIMO have been considered:

  • 3GPP LTE
  • IEEE802.11ax
  • IEEE802.11ay
  • IEEE 802.11ac
  • IEEE 802.11ah
  • HomePlug AV2
  • ITU G.hn.

The goal of this report is to characterize MIMO advantages and specifics for each standard. It also addresses market characteristics of discussed technologies. Report concentrates on profiling the industry players and their products.

MIMO characteristics, structures and types are also addressed and compared.

The report is written for a wide audience of managers and technical staff that involved in the design and implementation of advanced communications systems.

Note: Product cover images may vary from those shown
2 of 4

FEATURED COMPANIES

  • AceAxis
  • Broadcom
  • Ericsson
  • Lea Networks
  • Orca
  • Signalion
  • MORE

1.0 Introduction   
1.1 General   
1.2 Goal   
1.3 Structure   
1.4 Research Methodology   
1.5 Target Audience   

2.0 MIMO - Concept, Functions and Types   
2.1 History   
2.2 Concept: MIMO in Wireless Communications   
2.3 Types of MIMO: Examples   
2.3.1 CoMP MIMO   
2.3.2 Massive MIMO   
2.3.3 MU-MIMO   
2.3.4 MIMO-OFDM   
2.3.5 Mobile Networked MIMO   
2.3.6 MIMO - by Type of Communications Media   
2.3.7 Summary   
2.4 MIMO Benefits (Wireless Systems)   

3.0 MIMO Role - Wireless Systems   
3.1 MIMO Role in LTE Development   
3.1.1 Releases - 3GPP   
3.1.2 LTE Timetable   
3.1.3 Broadband Mobile Communications-Phases   
3.1.4 LTE Standardization-Industry Collaboration   
3.1.5 Industry Initiative   
3.1.6 Intellectual Property   
3.1.7 Key Features of LTE   
3.1.8 Details   
3.1.8.1 Evolved UMTS Radio Access Network (EUTRAN)   
3.1.8.2 UE Categories   
3.1.8.3. Evolved Packet Core (EPC)   
3.1.9 LTE Advanced   
3.1.10 SON   
3.1.11 Voice Support   
3.1.11.1 VoLTE   
3.1.12 Market   
3.1.12.1 Drivers   
3.1.12.2 Demand: Wireless Broadband   
3.1.12.3 LTE Market Projections   
3.1.13 Summary: Major LTE Benefits   
3.1.14 Industry   
Altair Semiconductor   
Aricent   
AceAxis   
Cisco   
CommAgility   
Ericsson   
Fujitsu   
Huawei   
Lime Microsystems   
Motorola Solutions   
Nokia   
NXP (Qualcomm is in a process of acquiring NXP)   
Qualcomm   
Samsung   
Sequans   
Signalion   
TI   
U-blox   
ZTE   
3.1.15 Specifics LTE MIMO   
3.1.15.1 Techniques   
3.1.15.2 Major Applications   
3.1.15.3 Modes   
3.1.15.4 MIMO: LTE Release 8   
3.1.15.5 MIMO: LTE Release 9   
3.1.15.6 MIMO: LTE Advanced   
3.1.15.7 LTE/LTE-A - MIMO Benefits   
3.1.15.8 Market Projections   
3.1.16 5G NR and MIMO   
3.2 802.11ax and MIMO   
3.2.1 Background   
3.2.2 Focal Points   
3.2.3 Major Features   
3.2.4 Major Applications   
3.2.5 Physical Layer   
3.2.5.1 Multi-User Operation   
3.2.5.2 Role of MU-MIMO   
3.2.5.3 Multi-User OFDMA   
3.2.6 MAC   
3.2.6.1 Spatial Reuse with Color Codes   
3.2.6.2 Power-saving with Target Wake Time   
3.2.6.3 Density   
3.2.7 802.11ax Operating Modes   
3.2.8 Industry   
Asus   
Broadcom   
Huawei   
Quantenna   
Qualcomm   
3.3 MIMO Role in 802.11ac Development   
3.3.1 General - Improving 802.11n Characteristics   
3.3.2 Approval   
3.3.3 Major Features: Summary   
3.3.4 Major Benefits   
3.3.5 Usage Models   
3.3.6 Waves   
3.3.7 Market Projections   
3.3.8 Industry   
Aruba - HP   
Broadcom   
Buffalo   
Cisco   
D-Link   
Fortinet   
Linksys   
Marvell   
Netgear   
Qualcomm   
Quantenna   
Redpine Signals   
3.3.9 MIMO and 802.11ac Standard   
3.3.9.1 Comparison   
3.3.9.2 Market Projections   
3.4 802.11ah and MIMO Role   
3.4.1 802.11ah (Wi-Fi HaLow)   
3.4.2 Requirements   
3.4.3 Goal and Schedule   
3.4.4 Attributes   
3.4.5 Use Cases   
3.4.6 PHY   
3.4.6.1 Bandwidth   
3.4.6.2 Channelization   
3.4.6.3 Transmission Modes and MIMO   
3.4.6.4 Relay Mode   
3.4.7 MAC Layer   
3.4.8 Summary   
3.4.9 Industry   
Aviacomm/Newracom   
Orca   
Aegis-IP   
3.5 802.11ay and MIMO Technology   
3.5.1 Timetable   
3.5.2 Scope   
3.5.3 Need   
3.5.4 Usage Cases (Examples)   
3.5.5 Expected Characteristics   
3.5.6 MIMO - Preliminary View   

4.0 MIMO in Wireline Communications   
4.1 HomePNA and ITU MIMO-based Technologies   
4.1.1 HomeGrid Forum   
4.1.1.1. Specifications   
4.1.1.1.1 General   
4.1.1.1.2 HomePNA Specification 3.1: Major Features   
4.1.1.1.3 Fast EoC HomePNA   
4.1.1.2 Major Benefits   
4.1.2 ITU G.hn   
4.1.2.1 General   
4.1.2.2 G.hn Details   
4.1.2.2.1 Differences   
4.1.2.2.2 Common Features   
4.1.2.3 Acceptance   
4.1.2.4 HomePNA and G.hn Documents   
4.1.2.5 G.hn-mimo - G.9963   
4.1.2.5.1 Drivers   
4.1.2.5.2 G.9963 Details   
4.1.2.5.2.1 General   
4.1.2.5.2.2 Wireline Specifics - G.hn-mimo   
4.1.2.5.2.3 Scope   
4.1.2.5.2.4 Performance   
4.1.3 Industry   
Comtrend   
Marvell   
Sigma Designs   
ST&T   
4.2 HomePlugAV2-mimo   
4.2.1 General   
4.2.1.1 Certification   
4.2.2 Major Improvements   
4.2.3 Specification Details   
4.2.3.1 MIMO Role   
4.2.4 Industry   
Broadcom   
Extollo   
Gigafast Ethernet   
Intersil   
Lea Networks   
Sineoji   
Trendnet   
TP-Link   
Qualcomm Atheros   
Zyxel   

5.0 Conclusions   

List of Figures
Figure 1: 2x2 MIMO   
Figure 2: Major Antenna Configurations   
Figure 3: MIMO Concept (2x2)   
Figure 4: Illustration - Beamforming   
Figure 5: MU-MIMO - Downlink   
Figure 6: Differences   
Figure 7: Evolution Path   
Figure 8: Towards Wireless Mobile Broadband   
Figure 9: LTE - IP   
Figure 10: EPC - Reference Architecture   
Figure 11: Projections: LTE Global Subscribers Base (Bil.)   
Figure 12: TAM: LTE Global Equipment Sale ($B)   
Figure 13: Spectral Efficiency DL   
Figure 14: Projections: Global - LTE MIMO Sales ($B)   
Figure 15: Channel Assignment   
Figure 16: Estimate - 802.11ac Consumers AP Shipping-Global (Mil. Units)   
Figure 17: Estimate - 802.11ac Consumers AP Shipping-Global ($B)   
Figure 18: Estimate: Global Shipping - 802.11ac MU-MIMO Consumers AP ($B)   
Figure 19: Estimate: Global - 802.11ac Consumers AP MIMO Sales ($B)   
Figure 20: 802.11ah Use Cases   
Figure 21: Frequency Spectrum (sub-1 GHz)   
Figure 22: 802.11ah  - Channelization Plan in U.S.   
Figure 23: Transmission Characteristics  - 802.11ah   
Figure 24: 802.11ah Features Summary   
Figure 25: PLC-MIMO (2x2)   
Figure 26: MIMO -Details   
Figure 27: Maximum Theoretical PHY Rates (home media) based on published figures   
Figure 28: HomePlug AV2 Features   
Figure 29: MIMO PLC Channels   

List of Tables
Table 1: MIMO Variations   
Table 2: MIMO Benefits   
Table 3: 3GPP Releases   
Table 4: Schedule   
Table 5: Initial LTE Characteristics: Illustration   
Table 6: LTE Frequency Bands   
Table 7: Users Equipment Categories (Rel. 8)   
Table 8: UE Categories (Rel. 10)   
Table 9: Extended - Rel.13   
Table 10: Transmission Modes   
Table 11: LTE Transmission Modes - MIMO   
Table 12: Additional Details   
Table 13: Comparison - Wi-Fi Characteristics   
Table 14: PHY: 802.11ax vs 802.11ac   
Table 15: Functionalities - 802.11ac   
Table 16: Specifics   
Table 17: Rates   
Table 18: Usage Models - 802.11ac   
Table 19: 802.11ac Waves   
Table 20: 802.11n vs. 802.11ac   
Table 21: ITU and HomePNA Standards   
Table 22: Comparative Characteristics   
Table 23: Frequency-Rate Characteristics  

Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
  • AceAxis
  • Aegis-IP
  • Altair Semiconductor
  • Aricent
  • Aruba - HP
  • Asus
  • Aviacomm/Newracom
  • Broadcom
  • Buffalo
  • Cisco
  • Cisco
  • CommAgility
  • Comtrend
  • D-Link
  • Ericsson
  • Extollo
  • Fortinet
  • Fujitsu
  • Gigafast Ethernet
  • Huawei
  • Intersil
  • Lea Networks
  • Lime Microsystems
  • Linksys
  • Marvell
  • Motorola Solutions
  • Netgear
  • Nokia
  • NXP (Qualcomm is in a process of acquiring NXP)
  • Orca
  • Qualcomm
  • Quantenna
  • Redpine Signals
  • Samsung
  • Sequans
  • Sigma Designs
  • Signalion
  • Sineoji
  • ST&T
  • TI
  • TP-Link
  • Trendnet
  • U-blox
  • ZTE
  • Zyxel
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll