+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

Handbook of Organic Materials for Electronic and Photonic Devices. Edition No. 2. Woodhead Publishing Series in Electronic and Optical Materials

  • ID: 4593616
  • Book
  • December 2018
  • Region: Global
  • 911 Pages
  • Elsevier Science and Technology
1 of 3

Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design.

  • Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials
  • Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices
  • New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Note: Product cover images may vary from those shown
2 of 3

Part 1: Materials 1. Organic materials for (opto)electronic applications: overview 2. Key trends in sustainable approaches to the synthesis of semiconducting polymers 3. Functional Blends of Organic Materials for Optoelectronic Applications 4. Organic photonic nanostructures 5. Molecular engineering of organic and organometallic second-order non-linear optical materials 6. Molecular crystals and thin films for photonic applications 7. Hybrid Perovskites for Device Applications

Part 2: Mechanisms 8. Frenkel Exciton Dynamics. A Theoretical Perspective 9. Strong light-matter interactions and exciton-polaritons in organic materials 10. Advances in modeling the physics of disordered organic electronic devices 11. Doping in organic semiconductors 12. Spintronics and magnetic field effects in organic materials and devices 13. Doping and processing of organic semiconductors for plastic thermoelectrics

Part 3: Characterization, structure-property relationships, processing, and stability 14. Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) techniques 15. Organic Thin Films Microstructure Characterization 16. Surface Enhanced Raman Scattering (SERS) as a Characterization Method for Metal-Organic Interactions 17. Advances in solution processing of organic materials for devices 18. Advances in device fabrication scale-up methods 19. Device stability in organic optoelectronics

Part 4: Applications 20. Organic photovoltaics: device physics 21. Organic light-emitting diodes 22. Materials and physics of light-emitting electrochemical cells 23. Vertical organic transistors 24. Vapor sensing using organic, polymer, and nanomaterial field-effect transistors 25. Processing and patterning of conducting polymers for flexible, stretchable and biomedical Electronics 26. Organic electronic memory devices

Note: Product cover images may vary from those shown
3 of 3

Loading
LOADING...

4 of 3
Ostroverkhova, Oksana
Oksana Ostroverkhova is Professor in Physics at the Department of Physics, Oregon State University, USA.
Note: Product cover images may vary from those shown
Adroll
adroll