+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

Neural Networks Modeling and Control

  • ID: 4806636
  • Book
  • January 2020
  • 158 Pages
  • Elsevier Science and Technology
1 of 3

Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control.

As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends.

  • Provide in-depth analysis of neural control models and methodologies
  • Presents a comprehensive review of common problems in real-life neural network systems
  • Includes an analysis of potential applications, prototypes and future trends

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Note: Product cover images may vary from those shown
2 of 3

1. Introduction 2. Mathematical preliminaries 3. Recurrent high order neural network identification of nonlinear discrete-time unknown system with time-delays 4. Neural identifier-control scheme for nonlinear discrete-time unknown system with time-delays 5. Recurrent high order neural network observer of nonlinear discrete-time unknown systems with time-delays 6. Neural observer-control scheme for nonlinear discrete-time unknown system with time-delays 7. Concluding remarks and future trends

Appendix A. Artificial neural networks B. Linear induction motor prototype C. Differential robot prototype

Note: Product cover images may vary from those shown
3 of 3

Loading
LOADING...

4 of 3
Rios, Jorge D.
Jorge D. Rios, was born in Guadalajara, Jalisco, Mexico, in 1985. He received the B.Sc. degree in Computer Engineering, in 2009, the M.Sc. and Ph. D. degrees in Electronics and Computer Engineering, in 2014 and 2017, respectively, from University of Guadalajara. He is in a Postdoctoral position at University of Guadalajara. His research interests center on neural control, nonlinear time-delay systems and their applications to electrical machines and robotics.
Alanis, Alma Y.
Alma Y. Alanis, was born in Durango, Durango, Mexico, in 1980. She received the B. Sc. degree from Instituto Tecnologico de Durango (ITD), Durango Campus, Durango, Durango, in 2002, the M.Sc. and the Ph.D. degrees in electrical engineering from the Advanced Studies and Research Center of the National Polytechnic Institute (CINVESTAV-IPN), Guadalajara Campus, Mexico, in 2004 and 2007, respectively. Since 2008 she has been with University of Guadalajara, where she is currently a Chair Professor in the Department of Computer Science. She is also member of the Mexican National Research System (SNI-2) and member of the Mexican Academy of Sciences. She has published papers in recognized International Journals and Conferences, besides four International Books. She is a Senior Member of the IEEE and Subject and Associated Editor of the Journal of Franklin Institute (Elsevier) and Intelligent Automation and Soft Computing (Taylor and Francis), moreover she is currently serving on a number of IEEE and IFAC Conference Organizing Committees. In 2013, she receives the grant for women in science by L'Oreal-UNESCOAMC- CONACYT-CONALMEX. In 2015, she receives the Research Award Marcos Moshinsky. Since 2008 she is member for the Accredited Assessors record RCEACONACYT, evaluating a wide range of national research projects, besides she has belonged to important project evaluation committees of national and international research projects. Her research interest centers on neural control, backstepping control, block control, and their applications to electrical machines, power systems and robotics.
Arana-Daniel, Nancy
Nancy Arana-Daniel received her B. Sc. Degree from the University of Guadalajara in 2000, and her M. Sc. And Ph.D. degrees in electric engineering with the special field in computer sicence from Research Center of the National Polytechnic Institute and Advanced Studies, CINVESTAV, in 2003 and 2007 respectively. She is currently a research fellow at the University of Guadalajara, in the Department of Computer Science Mxico, where she is working at the Laboratory of Intelligent Systems and the Research Center for Control Systems and Artificial Intelligence. She is IEEE Senior member and a member of National System of Researchers (SNI-1). She has published several papers in International Journals and Conferences and she has been technical manager of several projects that have been granted by the Nacional Council of Science and Technology (CONACYT). Also, se has collaborated in an international project granted by OPTREAT), She is Associated Editor of the Journal of Franklin Institute (Elsevier). Her research interests focus on applications of geometric algebra, geometric computing, machine learning, bio-inspired optimization, pattern recognition and robot navigation.
Lopez-Franco, Carlos
Carlos Lpez-Franco received the Ph.D. degree in Computer Science in 2007 from the Center of Research and Advanced Studies, CINVESTAV, Mexico. He is currently a professor at the University of Guadalajara, Mexico, Computer Science Department, and member of the Intelligent Systems group. He is IEEE Senior member and a member of National System of Researchers) or SNI, level 1. His research interests include geometric algebra, computer vision, robotics and intelligent systems.
Note: Product cover images may vary from those shown
Adroll
adroll