+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Novel Concepts in iPSC Disease Modeling. Advances in Stem Cell Biology Volume 15

  • Book

  • 300 Pages
  • January 2022
  • Elsevier Science and Technology
  • ID: 5230626

The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology.

iPSCs - Novel Concepts, Volume 15 addresses how important induced pluripotent stems cells are and how can they can help treat certain diseases.

Somatic cells can be reprogrammed into induced pluripotent stem cells by the expression of specific transcription factors. These cells have been transforming biomedical research over the last 15 years. This volume will address the advances in research of how induced pluripotent stem cells are being used for treatment of different disorders, such as liver disease, type-1 diabetes, Parkinson's disease, macular degeneration of the retina and much more.

The volume is written for researchers and scientists in stem cell therapy, cell biology, regenerative medicine and organ transplantation; and is contributed by world-renowned authors in the field.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Induced Pluripotent Stem Cells: Novel Concepts for Respiratory Disease Modelling 2. iPSC For Modeling of Metabolic and Neurodegenerative Disorders 3. iPSCs for Modeling Open-Angle Glaucoma 4. Patient-Specific Induced Pluripotent Stem Cells for Modeling Amyloid Disease 5. iPSCs for Modeling Choroideremia 6. Applications of human hiPSC and hESC for modeling substance use disorders: Addiction and neurodevelopmental toxicity 7. iPSCs for Modeling Cardiac Sodium Channelopathies 8. iPSCs for Modeling Danon Disease 9. Human induced pluripotent stem cells for Modeling of Niemann-Pick Disease type C1 10. iPSC-based Modeling in Psychiatric Disorders: Opportunities and Challenges 11. Research Applications of iPSCs for Modeling of Spinal Cord Injury 12. iPSCs for Modeling Smith-Magenis Syndrome

Authors

Alexander Birbrair Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Department of Radiology, Columbia University Medical Center, Medical Center, USA. Dr. Alexander Birbrair received his bachelor's biomedical degree from Santa Cruz State University in Brazil. He completed his PhD in Neuroscience, in the field of stem cell biology, at the Wake Forest School of Medicine under the mentorship of Osvaldo Delbono. Then, he joined as a postdoc in stem cell biology at Paul Frenette's laboratory at Albert Einstein School of Medicine in New York. In 2016, he was appointed faculty at Federal University of Minas Gerais in Brazil, where he started his own lab. His laboratory is interested in understanding how the cellular components of different tissues function and control disease progression. His group explores the roles of specific cell populations in the tissue microenvironment by using state-of-the-art techniques. His research is funded by the Serrapilheira Institute, CNPq, CAPES, and FAPEMIG. In 2018, Alexander was elected affiliate member of the Brazilian Academy of Sciences (ABC), and, in 2019, he was elected member of the Global Young Academy (GYA), and in 2021, he was elected affiliate member of The World Academy of Sciences (TWAS). He is the Founding Editor and Editor-in-Chief of Current Tissue Microenvironment Reports, and Associate Editor of Molecular Biotechnology. Alexander also serves in the editorial board of several other international journals: Stem Cell Reviews and Reports, Stem Cell Research, Stem Cells and Development, and Histology and Histopathology.