+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

The Global Market for Bioplastics and Natural Fibers to 2030

  • ID: 5238757
  • Report
  • January 2021
  • Region: Global
  • 445 Pages
  • Future Markets, Inc

FEATURED COMPANIES

  • AMSilk GmbH
  • BASF
  • Braskem
  • Dupont
  • Icytos
  • Mitsubishi Chemicals

Government legislation, consumer trends and environmental concerns are compelling the development of bioplastics and natural fibers in markets including food packaging, automotive, building/construction, textiles, agriculture, sports & leisure and consumer goods. Biocomposites based on these materials offer significant advantages over incumbent synthetic materials including lightweighting, sustainability and reduced carbon footprint. Natural fibers are also abundant and low-cost. The bioplastics and natural fibers market will witness good growth through to 2030, with excellent opportunities for large producers and start ups. 


The report provides an in-depth analysis of the bioplastics and natural fibers market by applications and bioplastic and natural fiber type.

Report contents include: 


  • Market trends and drivers in the bioplastics and natural fibers market.
  • Production estimates by bioplastics and natural fibers producers, types, market and regions.
  • Impact of COVID-19.
  • Challenges for the bioplastics and natural fibers market.
  • Advantages and disadvantages of the bioplastics and natural fibers over synthetic plastics. 
  • Analysis of synthetic biopolymers market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers,  Protein-based bioplastics, Algal and fungal. 
  • Analysis of natural fibers including seed fibers (cotton, luffa), bast fibers(jute, hemp, flax, ramie, kenaf), leaf fibers (sisal, abaca). fruit fibers (banana, pineapple, coir), stalk fibers, bamboo, sugarcane, animal proteins (alternative wool, leather, silk and down).
  • Profiles of over 250 companies. Companies profiled include Ananas Anam, BASF, Bast Fiber Technologies Inc., Kelheim Fibres GmbH, BComp, Circular Systems, Evrnu, Natural Fiber Welding, Icytos, NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, Arkema, DuPont, AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Kraig Biocraft Laboratories, Spiber and many more.
Note: Product cover images may vary from those shown

FEATURED COMPANIES

  • AMSilk GmbH
  • BASF
  • Braskem
  • Dupont
  • Icytos
  • Mitsubishi Chemicals

1 AIMS AND OBJECTIVES OF THE STUDY 
 
2 RESEARCH METHODOLOGY 
 
3 EXECUTIVE SUMMARY 
3.1 BIOPLASTICS 
3.1.1 What are bioplastics? 
3.1.2 Market trends 
3.1.3 Global production to 2030 
3.1.4 Main producers and global production capacities 
3.1.4.1 Producers 
3.1.4.2 By bioplastic type 
3.1.4.3 By region 
3.1.5 Global demand for bioplastics 2020, by market 
3.1.6 Impact of COVID-19 pandemic on the bioplastics market and future demand 
3.1.7 Challenges for the biobased and sustainable plastics market 
3.2 NATURAL FIBERS 
3.2.1 What are natural fibers? 
3.2.2 Benefits of natural fibers over synthetic 
3.2.3 Markets and applications for natural fibers 
3.2.4 Market drivers for natural fibers 
3.2.5 Global revenues for natural fibers 2020-2030 
3.2.5.1 By fiber type 
3.2.5.2 By market 
3.2.5.3 By region 
3.2.6 Technology challenges 
3.2.7 Future trends 
3.2.8 COVID-19 impact 
 
4 THE GLOBAL PLASTICS MARKET 
4.1 Global production 
4.2 The importance of plastic 
4.3 Issues with plastics use 
 
5 THE BIOPLASTICS MARKET 
5.1 Drop-in bio-based plastics 
5.2 Novel bio-based plastics 
5.3 Advantages and disadvantages compared to traditional plastics 
5.4 Types of Bio-based and/or Biodegradable Plastics 
5.5 BIODEGRADABLE AND COMPOSTABLE PLASTICS 
5.5.1 Biodegradability 
5.5.2 Compostability 
5.6 SYNTHETIC BIO-BASED POLYMERS 
5.6.1 Polylactic acid (Bio-PLA) 
5.6.1.1 Market analysis 
5.6.1.2 Producers 
5.6.2 Polyethylene terephthalate (Bio-PET) 
5.6.2.1 Market analysis 
5.6.2.2 Producers 
5.6.3 Polytrimethylene terephthalate (Bio-PTT) 
5.6.3.1 Market analysis 
5.6.3.2 Producers 
5.6.4 Polyethylene furanoate (Bio-PEF) 
5.6.4.1 Market analysis 
5.6.4.2 Comparative properties to PET 
5.6.4.3 Producers 
5.6.5 Polyamides (Bio-PA) 
5.6.5.1 Market analysis 
5.6.5.2 Producers 
5.6.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) 
5.6.6.1 Market analysis 
5.6.6.2 Producers 
5.6.7 Polybutylene succinate (PBS) and copolymers 
5.6.7.1 Market analysis 
5.6.7.2 Producers 
5.6.8 Polyethylene (Bio-PE) 
5.6.8.1 Market analysis 
5.6.8.2 Producers 
5.6.9 Polypropylene (Bio-PP) 
5.6.9.1 Market analysis 
5.6.9.2 Producers 
5.7 NATURAL BIO-BASED POLYMERS 
5.7.1 Polyhydroxyalkanoates (PHA) 
5.7.1.1 Market analysis 
5.7.1.2 Commercially available PHAs 
5.7.1.3 Producers 
5.7.2 Polysaccharides 
5.7.2.1 Microfibrillated cellulose (MFC) 
5.7.2.2 Cellulose nanocrystals 
5.7.2.3 Cellulose nanofibers 
5.8 MARKETS FOR BIOPLASTICS 
5.8.1 Packaging 
5.8.2 Consumer products 
5.8.3 Automotive 
5.8.4 Building & construction 
5.8.5 Textiles 
5.8.6 Electronics 
5.8.9 Agriculture and horticulture 
 
6 THE NATURAL FIBERS MARKET 
6.1 NATURAL FIBER TYPES 
6.1.1 Manufacturing method, matrix materials and applications of natural fibers 
6.1.2 Advantages of natural fibers 
6.1.3 Plants (cellulose, lignocellulose) 
6.1.3.1 Seed fibers 
6.1.3.2 Bast fibers 
6.1.3.3 Leaf fibers 
6.1.3.4 Fruit fibers 
6.1.3.5 Stalk fibers from agricultural residues 
6.1.3.6 Soft and hardwoods 
6.1.3.7 Cane, grasses and reed 
6.1.3.8 Fresh grass (green biorefinery) 
6.1.3.9 Modified natural polymers 
6.1.4 Animal (fibrous protein) 
6.1.4.1 Wool 
6.1.4.2 Silk fiber 
6.1.4.3 Leather 
6.1.4.4 Down 
6.2 MARKETS FOR NATURAL FIBERS 
6.2.1 Composites 
6.2.1.1 Market overview 
6.2.1.2 Natural fiber injection moulding compounds 
6.2.1.3 Non-woven natural fiber mat composites 
6.2.1.4 Aligned natural fiber-reinforced composites 
6.2.1.5 Natural fiber biobased polymer compounds 
6.2.1.6 Natural fiber biobased polymer non-woven mats 
6.2.1.7 Natural fiber biobased polymer composites 
6.2.1.8 Natural fiber thermoset bioresin composites 
6.2.2 Aerospace 
6.2.2.1 Market overview 
6.2.3 Automotive 
6.2.3.1 Market overview 
6.2.3.2 Applications of natural fibers 
6.2.4 Building/construction 
6.2.4.1 Market overview 
6.2.4.2 Applications of natural fibers 
6.2.5 Sports and leisure 
6.2.5.1 Market overview 
6.2.5.2 Composites 
6.2.5.3 Sportswear 
6.2.6 Textiles 
6.2.6.1 Market overview 
6.2.6.2 Consumer apparel 
6.2.6.3 Geotextiles 
6.2.6.4 Alternative leather 
6.2.7 Packaging 
6.2.7.1 Market overview 
6.2.7.2 Food packaging 
6.2.7.3 Beverage packaging 
6.3 GLOBAL NATURAL FIBERS MARKET VOLUMES 
6.3.1 Overall global fibers market 
6.3.2 Plant-based fiber production 
6.3.3 Animal-based natural fiber production 
 
7 BIOPLASTICS COMPANY PROFILES
 
8 NATURAL FIBER PRODUCERS AND PRODUCT DEVELOPER PROFILES 


9 REFERENCES 
 
List of Tables
Table 1. Market drivers and trends in bioplastics. 
Table 2. Global production capacities of bioplastics 2018-2030, in 1,000 tons. 
Table 3. Global production capacities, by producers. 
Table 4. Global production capacities of bioplastics 2019-2030, by type, in 1,000 tons. 
Table 5. Global production capacities of bioplastics 2019-2025, by region, tons. 
Table 6. Types of natural fibers. 
Table 7. Markets and applications for natural fibers. 
Table 8. Market drivers for natural fibers. 
Table 9. Global revenues for natural fibers, 2020-2030, by fiber type. 
Table 10. Global revenues for natural fibers, 2020-2030, by market. 
Table 11. Global revenues for natural fibers, 2020-2030, by region. 
Table 12. Issues related to the use of plastics. 
Table 13. Advantages and disadvantages of biobased plastics compared to conventional plastics. 
Table 14. Types of Bio-based and/or Biodegradable Plastics, applications. 
Table 15. Type of biodegradation. 
Table 16. Polylactic acid (PLA) market analysis. 
Table 17. Lactic acid producers and production capacities. 
Table 18. PLA producers and production capacities. 
Table 19. Bio-based Polyethylene terephthalate (Bio-PET) market analysis. 
Table 20. Bio-based Polyethylene terephthalate (PET) producers. 
Table 21. Polytrimethylene terephthalate (PTT) market analysis. 
Table 22. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 
Table 23. Polyethylene furanoate (PEF) market analysis. 
Table 24. PEF vs. PET. 
Table 25. FDCA and PEF producers. 
Table 26. Bio-based polyamides (Bio-PA) market analysis. 
Table 27. Leading Bio-PA producers production capacities. 
Table 28. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis. 
Table 29. Leading PBAT producers, production capacities and brands. 
Table 30. Bio-PBS market analysis. 
Table 31. Leading PBS producers and production capacities. 
Table 32. Bio-based Polyethylene (Bio-PE) market analysis. 
Table 33. Leading Bio-PE producers. 
Table 34. Bio-PP market analysis. 
Table 35. Leading Bio-PP producers and capacities. 
Table 36. Polyhydroxyalkanoates (PHA) market analysis. 
Table 37. Commercially available PHAs. 
Table 38. Polyhydroxyalkanoates (PHA) producers. 
Table 39. Microfibrillated cellulose (MFC) market analysis. 
Table 40. Leading MFC producers and capacities. 
Table 41. Cellulose nanocrystals analysis. 
Table 42. Cellulose nanocrystal production capacities and production process, by producer. 
Table 43. Cellulose nanofibers market analysis. 
Table 44. CNF production capacities and production process, by producer. 
Table 45. Market leader by Bio-based and/or Biodegradable Plastic types. 
Table 46. Properties of natural fibers. 
Table 47. Characteristics and composition of natural fibers. 
Table 48. Application, manufacturing method, and matrix materials of natural fibers. 
Table 49. Typical properties of natural fibers. 
Table 50. Companies developing polymers from mucelium. 
Table 51. Alternative wool materials producers. 
Table 52. Alternative silk materials producers. 
Table 53. Alternative leather materials producers. 
Table 54. Alternative down materials producers. 
Table 55. Commercial applications of natural fibers. 
Table 56. Natural fibers in the composites sector-market drivers, applications, product developers. 
Table 57. Application of natural fibers in composites. 
Table 58. Typical properties of short natural fiber-thermoplastic composites. 
Table 59. Properties of non-woven natural fiber mat composites. 
Table 60. Properties of aligned natural fiber composites. 
Table 61. Properties of natural fiber-bio-based polymer compounds. 
Table 62. Properties of natural fiber-bio-based 
Table 63. Natural fibers in the aerospace sector-market drivers, applications, product developers. 
Table 64. Natural fibers in the aerospace sector-market drivers, applications, product developers. 
Table 65. Applications of natural fibers in the automotive industry. 
Table 66. Natural fiber-based parts in different models of automotive manufacturers. 
Table 67. Natural fibers in the building/construction sector-market drivers, applications, product developers. 
Table 68. Applications of natural fibers in the building/construction sector. 
Table 69. Natural fibers in the sports and leisure sector-market drivers, applications, product developers. 
Table 70. Companies producing natural fiber sporting composites. 
Table 71. Natural fiber sportswear products. 
Table 72. Natural fibers in the textiles sector-market drivers, applications, product developers. 
Table 73. Natural fibers in the packaging sector-market drivers, applications, product developers. 
Table 74. Market leader by Bio-based and/or Biodegradable Plastic types. 
Table 75. Lactips plastic pellets. 
Table 76. Granbio Nanocellulose Processes. 
Table 77. Oji Holdings CNF products. 
 
List of Figures
Figure 1. Total global production capacities for biobased and sustainable plastics, all types, 000 tons. 
Figure 2. Global production capacities of bioplastics 2018-2030, in 1,000 tons by biodegradable/non-biodegradable types. 
Figure 3. Global production capacities of bioplastics in 2019-2030, by type, in 1,000 tons. 
Figure 4. Global production capacities of bioplastics in 2019-2025, by type. 
Figure 5. Global production capacities of bioplastics in 2030, by type. 
Figure 6. Global production capacities of bioplastics 2019. 
Figure 7. Global production capacities of bioplastics 2025. 
Figure 8. Current and future applications of biobased and sustainable plastics. 
Figure 9. Global demand for bioplastics by end user market, 2020. 
Figure 10. Global production capacities for bioplastics by end user market 2019-2030, tons. 
Figure 11. Challenges for the bioplastics market. 
Figure 12. Global revenues for natural fibers, 2020-2030, by fiber type. 
Figure 13. Global revenues for natural fibers, 2020-2030, by market. 
Figure 14. Global revenues for natural fibers, 2020-2030, by region. 
Figure 15. Global plastics production 1950-2018, millions of tons. 
Figure 16. Coca-Cola PlantBottle®. 
Figure 17. Interrelationship between conventional, bio-based and biodegradable plastics. 
Figure 18. Production capacities of Polyethylene furanoate (PEF) to 2025. 
Figure 19. Global production capacities for biobased and sustainable plastics by end user market 2019, 1,000 tons. 
Figure 20. Global production capacities for biobased and sustainable plastics by end user market 2020, 1,000 tons. 
Figure 21. Global production capacities for biobased and sustainable plastics by end user market 2030, in 1,000 tons. 
Figure 22. PHA bioplastics products. 
Figure 23. Global production capacities for biobased and sustainable plastics in packaging 2019-2030, in 1,000 tons. 
Figure 24. Global production capacities for biobased and sustainable plastics in consumer products 2019-2030, in 1,000 tons. 
Figure 25. Global production capacities for biobased and sustainable plastics in automotive 2019-2030, in 1,000 tons. 
Figure 26. Global production capacities for biobased and sustainable plastics in building and construction 2019-2030, in 1,000 tons. 
Figure 27. Global production capacities for biobased and sustainable plastics in textiles 2019-2030, in 1,000 tons. 
Figure 28. Global production capacities for biobased and sustainable plastics in electronics 2019-2030, in 1,000 tons. 
Figure 29. Biodegradable mulch films. 
Figure 30. Global production capacities for biobased and sustainable plastics in agriculture 2019-2030, in 1,000 tons. 
Figure 31. Types of natural fibers. 
Figure 32. Typical structure of mycelium-based foam. 
Figure 33. BLOOM masterbatch from Algix. 
Figure 34. TESLA-based Electric GT car. 
Figure 35. Car door produced from Hemp fiber. 
Figure 36. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 
Figure 37. Coir mats for erosion control. 
Figure 38. Footwear from Indianes. 
Figure 39. Global fiber production in 2019, by fiber type, million tonnes. 
Figure 40. Plant-based fiber production 2010-2030, by fiber type, million tons. 
Figure 41. Animal based fiber production 2010-2030, by fiber type, million tons. 
Figure 42. Algiknit yarn. 
Figure 43. Bio-PA rear bumper stay. 
Figure 44. PHA production process. 
Figure 45. IPA synthesis method. 
Figure 46. Compostable water pod. 
Figure 47. Sulzer equipment for PLA polymerization processing. 
Figure 48. Teijin bioplastic film for door handles. 
Figure 49. Corbion FDCA production process. 
Figure 50. Pluumo. 
Figure 51. Algiknit yarn. 
Figure 52. Amadou leather shoes. 
Figure 53. Anpoly cellulose nanofiber hydrogel. 
Figure 54. MEDICELLU™. 
Figure 55. Asahi Kasei CNF fabric sheet. 
Figure 56. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 
Figure 57. CNF nonwoven fabric. 
Figure 58. Roof frame made of natural fiber. 
Figure 59. Beyond Leather Materials product. 
Figure 60. Natural fibres racing seat. 
Figure 61. Cellugy materials. 
Figure 62. nanoforest-S. 
Figure 63. nanoforest-PDP. 
Figure 64. nanoforest-MB. 
Figure 65. Celish. 
Figure 66. Trunk lid incorporating CNF. 
Figure 67. ELLEX products. 
Figure 68. CNF-reinforced PP compounds. 
Figure 69. Kirekira! toilet wipes. 
Figure 70. Color CNF. 
Figure 71. Rheocrysta spray. 
Figure 72. DKS CNF products. 
Figure 73. Mushroom leather. 
Figure 74. CNF based on citrus peel. 
Figure 75. Citrus cellulose nanofiber. 
Figure 76. Filler Bank CNC products. 
Figure 77. Fibers on kapok tree and after processing. 
Figure 78. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 
Figure 79. CNF products from Furukawa Electric. 
Figure 80. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 
Figure 81. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 
Figure 82. CNF gel. 
Figure 83. Block nanocellulose material. 
Figure 84. CNF products developed by Hokuetsu. 
Figure 85. Marine leather products. 
Figure 86. Dual Graft System. 
Figure 87. Engine cover utilizing Kao CNF composite resins. 
Figure 88. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 
Figure 89. Kami Shoji CNF products. 
Figure 90. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 
Figure 91. BioFlex process. 
Figure 92. Chitin nanofiber product. 
Figure 93. Marusumi Paper cellulose nanofiber products. 
Figure 94. FibriMa cellulose nanofiber powder. 
Figure 95. Cellulomix production process. 
Figure 96. Nanobase versus conventional products. 
Figure 97. MOGU-Wave panels. 
Figure 98. CNF slurries. 
Figure 99. Range of CNF products. 
Figure 100. Reishi. 
Figure 101. Nippon Paper Industries’ adult diapers. 
Figure 102. Leather made from leaves. 
Figure 103. Nike shoe with beLEAF™. 
Figure 104. CNF clear sheets. 
Figure 105. Oji Holdings CNF polycarbonate product. 
Figure 106. XCNF. 
Figure 107. CNF insulation flat plates. 
Figure 108. Manufacturing process for STARCEL. 
Figure 109. Lyocell process. 
Figure 110. North Face Spiber Moon Parka. 
Figure 111. Spider silk production. 
Figure 112. 2 wt.% CNF suspension. 
Figure 113. BiNFi-s Dry Powder. 
Figure 114. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 
Figure 115. Silk nanofiber (right) and cocoon of raw material. 
Figure 116. Sulapac cosmetics containers. 
Figure 117. Comparison of weight reduction effect using CNF. 
Figure 118. CNF resin products. 
Figure 119. Vegea production process. 
Figure 120. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 
Figure 121. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film. 
Figure 122. Worn Again products. 
Figure 123. Zelfo Technology GmbH CNF production process. 


Note: Product cover images may vary from those shown

A selection of companies mentioned in this report includes:

  • AMSilk GmbH
  • Ananas Anam
  • Arkema
  • Avantium
  • BASF
  • Bast Fiber Technologies Inc.
  • BComp
  • Bolt Threads
  • Borealis
  • Braskem
  • Cathay
  • Circular Systems
  • Danimer Scientific
  • DuPont
  • Dupont
  • Ecovative
  • Evrnu
  • Icytos
  • Indorama
  • Kelheim Fibres GmbH
  • Kraig Biocraft Laboratories
  • Loliware
  • Mitsubishi Chemicals
  • Natural Fiber Welding
  • NatureWorks
  • Notpla
  • Novamont
  • Spiber 
  • Total Corbion
Note: Product cover images may vary from those shown

Loading
LOADING...