+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

The Global Market for Bioplastics and Biopolymers 2023-2033

  • PDF Icon

    Report

  • 405 Pages
  • July 2022
  • Region: Global
  • Future Markets, Inc
  • ID: 5264695

Global plastics production was over 367 million metric tons in 2020 and consumption is forecast to double by 2050. Apart from the environmental problems associated with extracting the non-renewable resource, nearly 80 million tonnes of plastics end up in landfills. Bioplastics and biopolymers are a biodegradable and sustainable alternatives to fossil-based plastics. 

Polymeric biomaterials are biobased products that allow for greater product sustainability due to their biodegradability and renewability. Their use is attractive as bioplastics that biodegrade to CO2 and H2O mitigate the negative effects of standard plastic (litter and damage to aqua environments). Renewable feedstocks can be utilized instead of petroleum, thereby reducing global dependence on crude oil and lessening the impact on climate.

The sky-rocketing price of petroleum coupled with government regulations and consumer global environmental concerns, and continued population growth is pushing the plastic industries towards sustainability. Growing government regulatory restrictions, consumers’ desire and energy conservation are some of the key factors that drive research and product development towards renewable resource-based polymeric biomaterials. The performance of bioplastics is also improving and range of applications expanding.

Bioplastics are defined as 'biobased and/or biodegradable plastics, a globally accepted definition. Not all bioplastics are biobased and if referring to the plastic problem of non-biodegradability, not all bioplastics are biodegradable. Biobased is based upon the carbon source while biodegradability upon chemical structure.

These include:

  • Biobased plastics that are not necessarily biodegradable (including conventional polymers, e.g. PE, made from biobased monomers.
  • Plastics containing both petro-based and bio-based components, e.g. PET, not necessarily biodegradable.
  • Biodegradable or compostable plastics derived from biobased materials, such as starch, cellulose, polylactides or polyhydroxyalkaboates.
  • Biodegradable petroleum-based plastics, e.g. PBAT.

Bioplastics producers have scaled up production considerably, with further expansion over the next few years. This report covers:

  • Analysis of non-biodegradable bio-based plastics and biodegradable plastics and polymers.
  • Global production capacities, market demand, market drivers, trends and challenges. 
  • Analysis of biobased chemicals including:
  • Bio-based adipic acid
  • 11-Aminoundecanoic acid (11-AA)
  • 1,4-Butanediol (1,4-BDO)
  • Dodecanedioic acid (DDDA)
  • Epichlorohydrin (ECH)
  • Ethylene 
  • Furfural
  • 5-Chloromethylfurfural (5-CMF)
  • 5-Hydroxymethylfurfural (HMF) 
  • 2,5-Furandicarboxylic acid (2,5-FDCA)
  • Furandicarboxylic methyl ester (FDME)
  • Isosorbide 
  • Itaconic acid
  • 3-Hydroxypropionic acid (3-HP)
  • 5 Hydroxymethyl furfural (HMF)
  • Lactic acid (D-LA) 
  • Lactic acid - L-lactic acid (L-LA)
  • Lactide
  • Levoglucosenone
  • Levulinic acid
  • Monoethylene glycol (MEG)
  • Monopropylene glycol (MPG)
  • Muconic acid
  • Naphtha
  • Pentamethylene diisocyanate
  • 1,3-Propanediol (1,3-PDO)
  • Sebacic acid
  • Succinic acid (SA)
  • Analysis of synthetic biopolymers market including:
  • Polylactic acid (Bio-PLA)
  • Polyethylene terephthalate (Bio-PET)
  • Polytrimethylene terephthalate (Bio-PTT)
  • Polyethylene furanoate (Bio-PEF)
  • Polyamides (Bio-PA)
  • Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
  • Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including
  • Polyhydroxyalkanoates (PHA)
  • Polysaccharides
  • Microfibrillated cellulose (MFC)
  • Cellulose nanocrystals
  • Cellulose nanofibers,
  • Protein-based bioplastics
  • Algal and fungal based bioplastics and biopolymers. 
  • Market segmentation analysis. Markets analysed include packaging, consumer goods, automotive, building & construction, textiles, electronics, agriculture & horticulture. 
  • Market growth to 2033 in terms of consumption and producer capacities. 
  • Emerging technologies in synthetic and natural produced bioplastics and biopolymers. 
  • More than 300 companies profiled including products and production capacities. Companies profiled include major producers such as Arkema, Avantium, BASF, Borealis, Braskem, Cathay, Danimer Scientific, Indorama, Mitsubishi Chemicals, NatureWorks, Novamont, TotalEnergies Corbion and many more. Profiles include products and production capacities. 
  • Profiles of start-up producers and product developers including AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Kraig Biocraft Laboratories, Plantic, Spiber and many more. 

Table of Contents

1 EXECUTIVE SUMMARY
1.1 Market trends
1.2 Drivers for recent growth in the bioplastics and biopolymers markets
1.3 Global production to 2033
1.4 Main producers and global production capacities
1.4.1 Producers
1.4.2 By biobased and sustainable plastic type
1.4.3 By region
1.5 Global demand for biobased and sustainable plastics 2020-21, by market
1.6 Impact of COVID-19 pandemic on the bioplastics market and future demand
1.7 Challenges for the bioplastics and biopolymers market

2 RESEARCH METHODOLOGY
3 THE GLOBAL PLASTICS MARKET
3.1 Global production of plastics
3.2 The importance of plastic
3.3 Issues with plastics use
3.4 The circular economy

4 BIO-BASED CHEMICALS AND FEEDSTOCKS
4.1 Types
4.2 Production capacities
4.3 Bio-based adipic acid
4.3.1 Applications and production
4.4 11-Aminoundecanoic acid (11-AA)
4.4.1 Applications and production
4.5 1,4-Butanediol (1,4-BDO)
4.5.1 Applications and production
4.6 Dodecanedioic acid (DDDA)
4.6.1 Applications and production
4.7 Epichlorohydrin (ECH)
4.7.1 Applications and production
4.8 Ethylene
4.8.1 Applications and production
4.9 Furfural
4.9.1 Applications and production
4.10 5-Hydroxymethylfurfural (HMF)
4.10.1 Applications and production
4.11 5-Chloromethylfurfural (5-CMF)
4.11.1 Applications and production
4.12 2,5-Furandicarboxylic acid (2,5-FDCA)
4.12.1 Applications and production
4.13 Furandicarboxylic methyl ester (FDME)
4.13.1 Applications and production
4.14 Isosorbide
4.14.1 Applications and production
4.15 Itaconic acid
4.15.1 Applications and production
4.16 3-Hydroxypropionic acid (3-HP)
4.16.1 Applications and production
4.17 5 Hydroxymethyl furfural (HMF)
4.17.1 Applications and production
4.18 Lactic acid (D-LA)
4.18.1 Applications and production
4.19 Lactic acid - L-lactic acid (L-LA)
4.19.1 Applications and production
4.20 Lactide
4.20.1 Applications and production
4.21 Levoglucosenone
4.21.1 Applications and production
4.22 Levulinic acid
4.22.1 Applications and production
4.23 Monoethylene glycol (MEG)
4.23.1 Applications and production
4.24 Monopropylene glycol (MPG)
4.24.1 Applications and production
4.25 Muconic acid
4.25.1 Applications and production
4.26 Naphtha
4.26.1 Description
4.26.2 Production capacities
4.26.3 Producers
4.27 Pentamethylene diisocyanate
4.27.1 Applications and production
4.28 1,3-Propanediol (1,3-PDO)
4.28.1 Applications and production
4.29 Sebacic acid
4.29.1 Applications and production
4.30 Succinic acid (SA)
4.30.1 Applications and production

5 BIOPLASTICS AND BIOPOLYMERS
5.1 Bio-based or renewable plastics
5.1.1 Drop-in bio-based plastics
5.1.2 Novel bio-based plastics
5.2 Biodegradable and compostable plastics
5.2.1 Biodegradability
5.2.2 Compostability
5.3 Advantages and disadvantages
5.4 Types of Bio-based and/or Biodegradable Plastics
5.5 Market leaders by biobased and/or biodegradable plastic types
5.6 Regional/country production capacities, by main types
5.6.1 Bio-based Polyethylene (Bio-PE) production capacities, by country
5.6.2 Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country
5.6.3 Bio-based polyamides (Bio-PA) production capacities, by country
5.6.4 Bio-based Polypropylene (Bio-PP) production capacities, by country
5.6.5 Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country
5.6.6 Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country
5.6.7 Bio-based Polybutylene succinate (PBS) production capacities, by country
5.6.8 Bio-based Polylactic acid (PLA) production capacities, by country
5.6.9 Polyhydroxyalkanoates (PHA) production capacities, by country
5.6.10 Starch blends production capacities, by country
5.7 SYNTHETIC BIO-BASED POLYMERS
5.7.1 Polylactic acid (Bio-PLA)
5.7.1.1 Market analysis
5.7.1.2 Production
5.7.1.2.1 PLA production process
5.7.1.2.2 Lactic acid
5.7.1.3 Producers and production capacities, current and planned
5.7.1.3.1 Lactic acid producers and production capacities
5.7.1.3.2 PLA producers and production capacities
5.7.2 Polyethylene terephthalate (Bio-PET)
5.7.2.1 Bio-based MEG and PET
5.7.2.2 Market analysis
5.7.2.3 Producers and production capacities
5.7.3 Polytrimethylene terephthalate (Bio-PTT)
5.7.3.1 Biobased PDO and PTT
5.7.3.2 Market analysis
5.7.3.3 Producers and production capacities
5.7.4 Polyethylene furanoate (Bio-PEF)
5.7.4.1 Market analysis
5.7.4.2 Comparative properties to PET
5.7.4.3 Producers and production capacities
5.7.4.3.1 FDCA and PEF producers and production capacities
5.7.5 Polyamides (Bio-PA)
5.7.5.1 Market analysis
5.7.5.2 Producers and production capacities
5.7.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
5.7.6.1 Market analysis
5.7.6.2 Producers and production capacities
5.7.7 Polybutylene succinate (PBS) and copolymers
5.7.7.1 Market analysis
5.7.7.2 Producers and production capacities
5.7.8 Polyethylene (Bio-PE)
5.7.8.1 Market analysis
5.7.8.2 Producers and production capacities
5.7.9 Polypropylene (Bio-PP)
5.7.9.1 Market analysis
5.7.9.2 Producers and production capacities
5.8 NATURAL BIO-BASED POLYMERS
5.8.1 Polyhydroxyalkanoates (PHA)
5.8.1.1 Technology description
5.8.1.2 Types
5.8.1.2.1 PHB
5.8.1.2.2 PHBV
5.8.1.3 Synthesis and production processes
5.8.1.4 Market analysis
5.8.1.5 Commercially available PHAs
5.8.1.6 Markets for PHAs
5.8.1.6.1 Packaging
5.8.1.6.2 Cosmetics
5.8.1.6.2.1 PHA microspheres
5.8.1.6.3 Medical
5.8.1.6.3.1 Tissue engineering
5.8.1.6.3.2 Drug delivery
5.8.1.6.4 Agriculture
5.8.1.6.4.1 Mulch film
5.8.1.6.4.2 Grow bags
5.8.1.7 Producers and production capacities
5.8.2 Polysaccharides
5.8.2.1 Microfibrillated cellulose (MFC)
5.8.2.1.1 Market analysis
5.8.2.1.2 Producers and production capacities
5.8.2.2 Nanocellulose
5.8.2.2.1 Cellulose nanocrystals
5.8.2.2.1.1 Market analysis
5.8.2.2.1.2 Producers and production capacities
5.8.2.2.2 Cellulose nanofibers
5.8.2.2.2.1 Market analysis
5.8.2.2.2.2 Producers and production capacities
5.8.2.3 Starch
5.8.2.3.1 Production
5.8.2.3.1.1 Thermoplastic starch (TPS)
5.8.2.3.1.2 Producers
5.8.3 Protein-based bioplastics
5.8.3.1 Types, applications and producers
5.8.4 Algal and fungal
5.8.4.1 Algal
5.8.4.1.1 Advantages
5.8.4.1.2 Production
5.8.4.1.3 Producers
5.8.4.2 Mycelium
5.8.4.2.1 Properties
5.8.4.2.2 Applications
5.8.4.2.3 Commercialization
5.8.5 Chitosan
5.8.5.1 Technology description
5.8.5.2 Applications
5.9 PRODUCTION OF BIOBASED AND SUSTAINABLE PLASTICS, BY REGION
5.9.1 North America
5.9.2 Europe
5.9.3 Asia-Pacific
5.9.3.1 China
5.9.3.2 Japan
5.9.3.3 Thailand
5.9.3.4 Indonesia
5.9.4 Latin America
5.10 MARKET SEGMENTATION OF BIOPLASTICS
5.10.1 Packaging
5.10.1.1 Applications
5.10.1.1.1 Flexible packaging
5.10.1.1.2 Rigid packaging
5.10.1.2 Production capacities
5.10.2 Consumer products
5.10.2.1 Applications
5.10.2.2 Production capacities
5.10.3 Automotive
5.10.3.1 Applications
5.10.3.2 Production capacities
5.10.4 Building & construction
5.10.4.1 Applications
5.10.4.2 Production capacities
5.10.5 Textiles
5.10.5.1 Apparel
5.10.5.2 Footwear
5.10.5.3 Medical textiles
5.10.5.4 Production capacities
5.10.6 Electronics
5.10.6.1 Applications
5.10.6.2 Production capacities
5.10.7 Agriculture and horticulture
5.10.7.1 Production capacities
5.10.7.2 Applications

6 COMPANY PROFILES (317 company profiles)7 REFERENCES
List of Tables
Table 1. Market trends in biobased and sustainable plastics
Table 2. Drivers for recent growth in the bioplastics and biopolymers markets
Table 3. Global production capacities of biobased and sustainable plastics 2018-2033, in 1,000 tons
Table 4. Global production capacities, by producers
Table 5. Global production capacities of biobased and sustainable plastics 2019-2033, by type, in 1,000 tons
Table 6. Global production capacities of biobased and sustainable plastics 2019-2033, by region, tons
Table 7. Issues related to the use of plastics
Table 8. List of Bio-based chemicals
Table 9. Biobased MEG producers capacities
Table 10. Bio-based naphtha producers
Table 11. Type of biodegradation
Table 12. Advantages and disadvantages of biobased plastics compared to conventional plastics
Table 13. Types of Bio-based and/or Biodegradable Plastics, applications
Table 14. Market leader by Bio-based and/or Biodegradable Plastic types
Table 15. Bioplastics regional production capacities, 1,000 tons, 2019-2033
Table 16. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
Table 17. Lactic acid producers and production capacities
Table 18. PLA producers and production capacities
Table 19. Planned PLA capacity expansions in China
Table 20. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications
Table 21. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
Table 22. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications
Table 23. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
Table 24. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
Table 25. PEF vs. PET
Table 26. FDCA and PEF producers
Table 27. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications
Table 28. Leading Bio-PA producers production capacities
Table 29. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications
Table 30. Leading PBAT producers, production capacities and brands
Table 31. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications
Table 32. Leading PBS producers and production capacities
Table 33. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications
Table 34. Leading Bio-PE producers
Table 35. Bio-PP market analysis- manufacture, advantages, disadvantages and applications
Table 36. Leading Bio-PP producers and capacities
Table 37.Types of PHAs and properties
Table 38. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
Table 39. Polyhydroxyalkanoate (PHA) extraction methods
Table 40. Polyhydroxyalkanoates (PHA) market analysis
Table 41. Commercially available PHAs
Table 42. Markets and applications for PHAs
Table 43. Applications, advantages and disadvantages of PHAs in packaging
Table 44. Polyhydroxyalkanoates (PHA) producers
Table 45. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications
Table 46. Leading MFC producers and capacities
Table 47. Cellulose nanocrystals analysis
Table 48: Cellulose nanocrystal production capacities and production process, by producer
Table 49. Cellulose nanofibers market analysis
Table 50. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes
Table 51. Types of protein based-bioplastics, applications and companies
Table 52. Types of algal and fungal based-bioplastics, applications and companies
Table 53. Overview of alginate-description, properties, application and market size
Table 54. Companies developing algal-based bioplastics
Table 55. Overview of mycelium fibers-description, properties, drawbacks and applications
Table 56. Companies developing mycelium-based bioplastics
Table 57. Overview of chitosan-description, properties, drawbacks and applications
Table 58. Global production capacities of biobased and sustainable plastics in 2019-2033, by region, tons
Table 59. Biobased and sustainable plastics producers in North America
Table 60. Biobased and sustainable plastics producers in Europe
Table 61. Biobased and sustainable plastics producers in Asia-Pacific
Table 62. Biobased and sustainable plastics producers in Latin America
Table 63. Granbio Nanocellulose Processes
Table 64. Lactips plastic pellets
Table 65. Oji Holdings CNF products

List of Figures
Figure 1. Total global production capacities for biobased and sustainable plastics, all types, 000 tons
Figure 2. Global production capacities of bioplastics 2018-2033, in 1,000 tons by biodegradable/non-biodegradable types
Figure 3. Global production capacities of biobased and sustainable plastics in 2019-2033, by type, in 1,000 tons
Figure 4. Global production capacities of bioplastics in 2019-2033, by type
Figure 5. Global production capacities of bioplastics in 2030, by type
Figure 6. Global production capacities of biobased and sustainable plastics 2020
Figure 7. Global production capacities of biobased and sustainable plastics 2025
Figure 8. Current and future applications of biobased and sustainable plastics
Figure 9. Global demand for biobased and sustainable plastics by end user market, 2020
Figure 10. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, tons
Figure 11. Challenges for the bioplastics and biopolymers market
Figure 12. Global plastics production 1950-2020, millions of tons
Figure 13. Bio-based chemicals and feedstocks production capacities, 2018-2033
Figure 14. 1,4-Butanediol (BDO) production capacities, 2018-2033 (tonnes)
Figure 15. Dodecanedioic acid (DDDA) production capacities, 2018-2033 (tonnes)
Figure 16. Epichlorohydrin production capacities, 2018-2033 (tonnes)
Figure 17. Ethylene production capacities, 2018-2033 (tonnes)
Figure 18. L-lactic acid (L-LA) production capacities, 2018-2033 (tonnes).67
Figure 19. Lactide production capacities, 2018-2033 (tonnes)
Figure 20. Bio-MEG producers capacities
Figure 21. Bio-MPG production capacities, 2018-2033
Figure 22. BIobased naphtha production capacities, 2018-2033 (tonnes)
Figure 23. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2033 (tonnes)
Figure 24. Sebacic acid production capacities, 2018-2033 (tonnes)
Figure 25. Coca-Cola PlantBottle®
Figure 26. Interrelationship between conventional, bio-based and biodegradable plastics
Figure 27. Bioplastics regional production capacities, 1,000 tons, 2019-2033
Figure 28. Bio-based Polyethylene (Bio-PE), 1,000 tons, 2019-2033
Figure 29. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, 1,000 tons, 2019-2033
Figure 30. Bio-based polyamides (Bio-PA) production capacities, 1,000 tons, 2019-2033
Figure 31. Bio-based Polypropylene (Bio-PP) production capacities, 1,000 tons, 2019-2033
Figure 32. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, 1,000 tons, 2019-2033
Figure 33. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, 1,000 tons, 2019-2033
Figure 34. Bio-based Polybutylene succinate (PBS) production capacities, 1,000 tons, 2019-2033
Figure 35. Bio-based Polylactic acid (PLA) production capacities, 1,000 tons, 2019-2033
Figure 36. PHA production capacities, 1,000 tons, 2019-2033
Figure 37. Starch blends production capacities, 1,000 tons, 2019-2033
Figure 38. Production capacities of Polyethylene furanoate (PEF) to 2025
Figure 39. PHA family
Figure 40. BLOOM masterbatch from Algix
Figure 41. Typical structure of mycelium-based foam
Figure 42. Commercial mycelium composite construction materials
Figure 43. Global production capacities of biobased and sustainable plastics 2020
Figure 44. Global production capacities of biobased and sustainable plastics 2025
Figure 45. Global production capacities for biobased and sustainable plastics by end user market 2021, 1,000 tons
Figure 46. Global production capacities for biobased and sustainable plastics by end user market 2021, 1,000 tons
Figure 47. Global production capacities for biobased and sustainable plastics by end user market, 2033 , in 1,000 tons
Figure 48. PHA bioplastics products
Figure 49. Global production capacities for biobased and sustainable plastics in packaging 2019-2033, in 1,000 tons
Figure 50. Global production capacities for biobased and sustainable plastics in consumer products 2019-2033, in 1,000 tons
Figure 51. Global production capacities for biobased and sustainable plastics in automotive 2019-2033, in 1,000 tons
Figure 52. Global production capacities for biobased and sustainable plastics in building and construction 2019-2033, in 1,000 tons
Figure 53. AlgiKicks sneaker, made with the Algiknit biopolymer gel
Figure 54. Reebok's [REE]GROW running shoes
Figure 55. Camper Runner K21
Figure 56. Global production capacities for biobased and sustainable plastics in textiles 2019-2033, in 1,000 tons
Figure 57. Global production capacities for biobased and sustainable plastics in electronics 2019-2033, in 1,000 tons
Figure 58. Biodegradable mulch films
Figure 59. Global production capacities for biobased and sustainable plastics in agriculture 2019-2033, in 1,000 tons
Figure 60. Algiknit yarn
Figure 61. Bio-PA rear bumper stay
Figure 62. formicobio™ technology
Figure 63. nanoforest-S
Figure 64. nanoforest-PDP
Figure 65. nanoforest-MB
Figure 66. CuanSave film
Figure 67. ELLEX products
Figure 68. CNF-reinforced PP compounds
Figure 69. Kirekira! toilet wipes
Figure 70. Mushroom leather
Figure 71. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
Figure 72. PHA production process
Figure 73. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
Figure 74. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
Figure 75. CNF gel
Figure 76. Block nanocellulose material
Figure 77. CNF products developed by Hokuetsu
Figure 78. Made of Air's HexChar panels
Figure 79. IPA synthesis method
Figure 80. MOGU-Wave panels
Figure 81. Reishi
Figure 82. Nippon Paper Industries’ adult diapers
Figure 83. Compostable water pod
Figure 84. CNF clear sheets
Figure 85. Oji Holdings CNF polycarbonate product
Figure 86. Manufacturing process for STARCEL
Figure 87. Lyocell process
Figure 88. Spider silk production
Figure 89. Sulapac cosmetics containers
Figure 90. Sulzer equipment for PLA polymerization processing
Figure 91. Teijin bioplastic film for door handles
Figure 92. Corbion FDCA production process
Figure 93. Visolis’ Hybrid Bio-Thermocatalytic Process

Companies Mentioned

A selection of companies mentioned in this report includes:

  • 9Fiber, Inc
  • ADBioplastics
  • Advanced Biochemical (Thailand) Co., Ltd. 
  • AGRANA Staerke GmbH
  • AlgiKnit
  • Algix LLC
  • AMSilk GmbH 
  • An Phát Bioplastics 
  • Anellotech, Inc. 
  • Ankor Bioplastics Co., Ltd
  • Anqing He Xing Chemical Co., Ltd. 
  • Applied Bioplastics 
  • Aquafil S.p.A
  • Aquapak Polymers Ltd
  • Archer Daniel Midland Company (ADM) 
  • Arctic Biomaterials Oy
  • Arkema S.A
  • Arlanxeo 
  • Arrow Greentech
  • Arzeda Corp
  • Attis Innovations, llc
  • AVA Biochem AG 
  • Avani Eco 
  • Avantium B.V. 
  • Ayas Renewables Inc
  • Azolla 
  • BASF SE
  • BBCA Biochemical & GALACTIC Lactic Acid Co., Ltd. 
  • Bcomp ltd
  • Bio Fab NZ 
  • Bioextrax AB 
  • BIO-FED 
  • Biofiber Tech Sweden AB 
  • Biofibre GmbH
  • Biofine Technology, LLC 
  • Biokemik 
  • BioLogiQ, Inc. 
  • Biomass Resin Holdings Co., Ltd
  • Biome Bioplastics 
  • Bioplastech Ltd 
  • BIOTEC GmbH & Co. KG
  • Biotrem 
  • BlockTexx Pty Ltd
  • BluCon Biotech GmbH
  • Blue BioFuels, Inc
  • Bluepha Beijing Lanjing Microbiology Technology Co., Ltd
  • Bolt Threads 
  • Borealis AG
  • Borregaard Chemcell
  • Bosk Bioproducts Inc. 
  • B-PREG.
  • Braskem SA 
  • CARAPAC Company
  • Carbiolice 
  • Carbios 
  • Cardia Bioplastics Ltd
  • Cargill 
  • Catalyxx 
  • Cathay Industrial Biotech, Ltd
  • Celanese Corporation 
  • Cellucomp Ltd
  • Cellugy 
  • Cellutech AB (Stora Enso)
  • CH-Bioforce Oy
  • Checkerspot, Inc
  • Chempolis Oy 
  • Chongqing Bofei Biochemical Products Co., Ltd
  • Chuetsu Pulp & Paper Co., Ltd
  • Circa Group
  • CJ CheilJedang Corporation 
  • Clariant AG 
  • COMPANY PROFILES 
  • Corumat, Inc
  • Cristal Union Group
  • Cruz Foam
  • CuanTec Ltd
  • Daicel Polymer Ltd
  • Daio Paper Corporation
  • DAK Americas LLC 
  • Danimer Scientific LLC 
  • Diamond Green Diesel LLC
  • DIC Corporation
  • Dongnam Realize 
  • Dongying Hebang Chemical Corp
  • Dow, Inc
  • DuFor Resins B.V
  • DuPont 
  • DuPont Tate & Lyle Bio Products Co., LLC 
  • Eastman Chemical Ltd. Corporation 
  • Ecoshell
  • Ecovative Design LLC
  • Ecovia Renewables
  • EggPlant Srl 
  • EMS-Grivory 
  • Eni S.p.A. 
  • Eranova
  • Esbottle Oy 
  • Evolved By Nature
  • Evonik Industries AG
  • Fairbrics.
  • Far Eastern New Century Corporation
  • Fiberight 
  • Fiberlean Technologies
  • FKuR Kunststoff GmbH
  • Floreon 
  • Foamplant BV 
  • Fraunhofer Institute for Silicate Research ISC
  • Fraunhofer Institute for Structural Durability and System Reliability LBF
  • Fuji Pigment Co., Ltd. 
  • Full Cycle Bioplastics LLC
  • Futerro
  • Futuramat Sarl
  • Galatea Biotech Srl 
  • Gen3Bio 
  • Genecis Bioindustries, Inc. 
  • Genomatica
  • Grabio Greentech Corporation
  • Granbio Technologies
  • Great Wrap 
  • Grupp MAIP
  • GS Alliance Co. Ltd
  • Guangzhou Bio-plus Materials Technology Co., Ltd
  • Haldor Topsoe A/S 
  • Hattori Shoten K.K. 
  • Hebei Casda Biomaterials Co., Ltd
  • Hebei Jiheng Chemical Co., Ltd
  • Hebei Xinhua Lactic Acid Co. 
  • Heilongjiang Chenneng Bioengineering Ltd. 
  • Henan Jindan Lactic Acid Technology Co., Ltd
  • Henan Xinghan Biological Technology Co., Ltd. 
  • Hengli Petrochemical
  • Hengshui Jinghua Chemical Co., Ltd. 
  • Hokuetsu Toyo Fibre Co., Ltd
  • Hubei Guangshui National Chemical Co., Ltd
  • Humintech GmbH 
  • Hunan Anhua Lactic Acid Co
  • India Glycols Ltd
  • Indochine Bio Plastiques (ICBP) Sdn Bhd
  • Indorama Ventures Public Co. Ltd. 
  • Inovyn 
  • Inspidere B.V. 
  • Ioniqa 
  • Itaconix 
  • Jiangsu Anpon Electrochemical Co., Ltd
  • Jiangsu Jinhe Hi-Tech Co., Ltd
  • Jiangsu Senda Biological Engineering Co., Ltd
  • Jiangsu Torise Biomaterials Co., Ltd
  • Jiangsu Yangnong Chemical Group Co., Ltd. 
  • Jiangsu Zhongzheng Biochemical Co., Ltd
  • Jilin COFCO Biomaterial Corporation 
  • JinHui ZhaoLang High Technology Co., Ltd. 
  • Jungbunzlauer Suisse AG
  • Kalion, Inc
  • Kaneka Corporation
  • Kingfa Sci. & Tech. Co. Ltd
  • Kolon Industries, Inc
  • Kraig Biocraft Laboratories 
  • Kyanite Microorganism 
  • Lactips S.A
  • LAM’ON
  • LCY Biosciences
  • Lean Orb
  • Lenzing AG 
  • LEUNA-Harze GmbH.
  • LG Chem
  • Lingrove, Inc
  • Lixea Limited
  • Locus Fermentation Solutions
  • Loick Biowertstoff GmbH
  • Loliware LLC
  • LOTTE Chemical Corporation 
  • Lygos, Inc 
  • LyondellBasell Industries Holdings B.V
  • Made of Air GmbH
  • Mango Materials, Inc. 
  • Marea 
  • Marine Innovation Co., Ltd
  • MedPHA Bio-Tech Co., Ltd
  • Meghmani Finechem Ltd. 
  • Mercurius Biorefining Inc
  • METabolic EXplorer S.A. (METEX) 
  • Metgen Oy
  • Mitr Phol 
  • Mitsubishi Chemical Corporation
  • Mitsubishi Polyester Film GmbH 
  • Mitsui Chemicals, Inc. 
  • Mobius
  • Mogu S.r.l
  • Multibax Public Co., Ltd. 
  • Mura Technology Limited 
  • Musashino Chemical Laboratory, Ltd. 
  • MYCL 
  • MycoWorks 
  • Nabaco, Inc. 
  • Nafigate Corporation a.s
  • Nanollose Ltd 
  • Nantong Cellulose Fibers Co., Ltd
  • Nantong Jiuding Biological Engineering Co., Ltd. 
  • NatPol
  • Natural Fiber Welding, INc. 
  • NatureWorks LLC 
  • NefFa 
  • Neste Oyj
  • New Zealand Natural Fibers (NZNF)
  • Newlight Technologies LLC
  • NEXE Innovations Inc
  • Ningbo Huanyang Chemical Co., Ltd. 
  • Ningbo Tianan Biologic Material 
  • Nippon Paper Industries 
  • Norske Skog AS 
  • Northern Technologies International 
  • Notpla 
  • Novamont S.p.A
  • Novomer 
  • NUREL S.A. 
  • Nxtlevvel 
  • Oakbio, Inc
  • Oimo 
  • Oji Paper Company
  • Oleon N.V
  • Origin Materials
  • Paques Biomaterials 
  • PHABuilder 
  • PHB Industrial S.A. 
  • Photanol B.V. 
  • Plafco Fibertech Oy
  • Plantic Technologies Ltd
  • Plantics B.V. 
  • Polaris Renewables LLC
  • Polyferm 
  • Pond Biomaterials
  • Prime Polymer Co., Ltd
  • PT Intera Lestari Polimer
  • PTT MCC Biochem Co., Ltd
  • Qnature UG
  • Radical Plastics
  • Radici Group
  • Red Avenue New Materials Group Co., Ltd. 
  • Relement BV
  • RenCom AB 
  • Ripro Corporation 
  • Rodenburg Biopolymers B.V
  • Roquette S.A. 
  • Royal DSM N.V
  • RWDC Industries
  • Samyang Corporation 
  • Saphium Biotechnology GMBH
  • Saudi Basic Industries Corp. (SABIC) 
  • Sebacic Oman SAOC 
  • Sebiplast s.r.l. 
  • Seevix Material Sciences Ltd. 
  • Seiko PMC Corporation
  • S-EnPol Co., Ltd
  • Shandong Baisheng Biotechnology Co., Ltd
  • Shandong Fuwin New Material Co., Ltd. 
  • Shandong Landian Biological Technology Co., Ltd
  • Shandong Minji Chemical Co., Ltd. 
  • Shandong Siqiang Chemical Group Co., Ltd. 
  • Shanghai Tong-Jie-Liang Biomaterials Co., Ltd. 
  • Shanxi Leda Biochemical Co., Ltd. 
  • Shanxi Zhengang Chemical Co., Ltd. 
  • Shenghong Group
  • Shenzhen Ecomann Biotechnology Co., Ltd
  • Shenzhen Esun Industrial Co., Ltd. 
  • Sirmax Group 
  • SK Chemicals Co., Ltd. 
  • Smartfiber AG 
  • Solvay SA 
  • Soma Bioworks/White Lemur Co. 
  • Spectrus Sustainable Solutions Pvt Ltd
  • Spiber, Inc. 
  • Spidey Tek 
  • Spolchemie 
  • STORA ENSO OYJ
  • Sulapac Oy 
  • Sulzer Chemtech AG
  • Sunar Misir 
  • SUPLA Bioplastics
  • TAIF-NK 
  • Tanin sevnica kemicna industrija
  • TBM Co., Ltd. 
  • TechnipFMC 
  • TECNARO GmbH 
  • Teijin Ltd 
  • TerraVerdae BioWorks Inc 
  • Teysha Technologies Limited 
  • thyssenkrupp Industrial Solutions AG 
  • Tianan Biologic Material Co., Ltd. 
  • Tianjin GreenBio Materials Co., Ltd
  • Tianxing Biotechnology Co., Ltd
  • Tômtex 
  • Tongliao Xinghe Biotechnology Co., Ltd
  • Toray Industries, Inc
  • TotalEnergies Corbion
  • Toyobo Co., Ltd. 
  • Traceless
  • Treemera GmbH 
  • TripleW 
  • UBQ Materials
  • Uluu
  • Unitika Ltd. 
  • UPM-Kymmene Oyj
  • VEnvirotech Biotechnology SL
  • Virent Inc. 
  • Visolis Inc
  • VTT Technical Research Centre of Finland Ltd
  • Vynova 
  • WeylChem International GmbH
  • Woodly Ltd
  • Wuhan Sanjiang Space Good Biotech Co., Ltd
  • Xampla 
  • Xinjiang Lanshan Tunhe 
  • Yield10 Bioscience, Inc
  • Zhangjiagang Glory Chemical Industry Co., Ltd
  • Zhejiang Hangzhou Xinfu Pharmaceutical Co., Ltd
  • Zhejiang Hisun Biomaterials Co., Ltd. 
  • Zhejiang Youcheng New Materials Co., Ltd 

Methodology

Loading
LOADING...