+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Nanomaterials for Direct Alcohol Fuel Cells. Characterization, Design, and Electrocatalysis. Micro and Nano Technologies

  • Book

  • August 2021
  • Elsevier Science and Technology
  • ID: 5275281

Nanomaterials for Direct Alcohol Fuel Cells explains nanomaterials and nanocomposites as well as the characterization, manufacturing, and design of alcohol fuel cell applications. The advantages of direct alcohol fuel cells (DAFCs) are significant for reliable and long-lasting portable power sources used in devices such as mobile phones and computers. Even though substantial improvements have been made in DAFC systems over the last decade, more effort is needed to commercialize DAFCs by producing durable, low-cost, and smaller-sized devices. Nanomaterials have an important role to play in achieving this aim.

The use of nanotechnology in DAFCs is vital due to their role in the synthesis of nanocatalysts within the manufacturing process. Lately, nanocatalysts containing carbon such as graphene, carbon nanotubes, and carbon nanocoils have also attracted much attention. When compared to traditional materials, carbon-based materials have unique advantages, such as high corrosion resistance, better electrical conductivity, and less catalyst poisoning. This book also covers different aspects of nanocomposites fabrication, including their preparation, design, and characterization techniques for their fuel cell applications.

This book is an important reference source for materials scientists, engineers, energy scientists, and electrochemists who are seeking to improve their understanding of how nanomaterials are being used to enhance the efficiency and lower the cost of DAFCs.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Fundamentals of electrochemistry 2. Nanomaterials and their classification 3. The electrochemical mechanism and transport phenomenon of liquid fuel cells 4. The material development and characterization of direct alcohol fuel cells 5. Fundamentals of alcohol fuel cells 6. The electrocatalysts with pH of the electrolyte for the complete pathways of the oxidation reactions 7. Pt-based catalysts for alcohol oxidation 8. Monometallic nanomaterials for direct alcohol fuel cells 9. Bimetallic nanomaterials for direct alcohol fuel cells 10. Ternary/quaternary nanomaterials for direct alcohol fuel cells 11. Catalysts for high-temperature fuel cells operated by alcohol fuels 12. Porous materials for polymer electrolyte membrane fuel cells 13. Novel materials structures and compositions for alcohol oxidation reaction 14. Synthesis and characterization of nanocomposite membranes for high-temperature polymer electrolyte membranes (PEM) methanol fuel cells 15. Fabrication and properties of polymer electrolyte membranes (PEM) for direct methanol fuel cell application 16. Carbonaceous nanomaterials (carbon nanotubes, fullerenes, and nanofibers) for alcohol fuel cells 17. Carbon-based nanomaterials for alcohol fuel cells 18. Dendrimer-based nanocomposites for alcohol fuel cells 19. Metal organic framework-based nanocomposites for alcohol fuel cells 20. Carbon-polymer hybrid-supported nanomaterials for alcohol fuel cells 21. Polymer-based nanocatalysts for alcohol fuel cells 22. Different synthesis methods of nanomaterials for direct alcohol fuel cells 23. The synthesis and characterization of size-controlled bimetallic nanoparticles 24. The synthesis and characterization of size-controlled monometallic nanoparticles 25. Topics on the fundamentals of the alcohol oxidation reactions in acid and alkaline electrolytes 26. Direct alcohol-fed solid oxide fuel cells 27. Commercial aspects of direct alcohol fuel cells

Authors

Fatih Sen Full Professor and Head of the Sen Research Group, Department of Biochemistry, Faculty of Science and Art, Dumlupinar University, K�tahya, Turkey. Fatih Sen is?a Full Professor and Head of the Sen Research Group, Department of Biochemistry, Faculty of Science and Art, Dumlupinar University, Turkey.?Dr?Sen's research focuses on energy and sensor applications of nanomaterials. This is his second?book for Elsevier, following?'Nanomaterials for Hydrogen Storage Applications', which was published?in 2020.