+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Advances in Biomembranes and Lipid Self-Assembly. Volume 34

  • Book

  • December 2021
  • Elsevier Science and Technology
  • ID: 5342512

Advances in Biomembranes and Lipid Self-Assembly, Volume 34, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for the study of cell membranes, lipid model membranes and lipid self-assemblies, from the micro- to the nanoscale. As planar lipid bilayers are widely studied due to their ubiquity in nature, this book presents research on their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Chapters cover Physical properties of SOPC lipid membranes containing cholesterol by molecular dynamics simulation, Exciting membrane fluctuations - more than thermal stimulation, Fluctuations shaping bio-membrane adhesion, and more.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Physical properties of SOPC lipid membranes containing cholesterol by molecular dynamics simulation Hassan Chamati 2. Phase Separation in Biological Membranes: an Overview with Focus on Experimental Effects of� Illumination and Osmotic Pressure Changes Cornelia Monzel 3. Tuning the membrane fluidity of liposomes for desirable in vivo fate with enhanced drug delivery Shirui Mao 4. Recent advances in quartz crystal microbalance with dissipation monitoring: phase transitions as descriptors for specific lipid membrane studies Patricia L. P�rez and George Cordoyiannis 5. Phospholipid Langmuir-Blodgett nano-thin monolayers: electrical response to Cadmium ions and harmful volatile organic compounds Georgi B. Hadjichristov 6. Gold nanoparticles Phospholipid membrane interactions Poornima Budime Santhosh

Authors

Ales Iglic? Full Professor and Head of Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Slovenia. Ales Iglic received his B.Sc. and Ph.D. degrees in physics and M.Sc. degree in biophysics from the Department of Physics, and the Ph.D. degree in electrical engineering from the Faculty of Electrical Engineering, all from the University of Ljubljana. He is a Full Professor and the Head of Laboratory of Biophysics of the Faculty of Electrical Engineering at University of Ljubljana. His main research interests are in electrostatics, mechanics and statistical physics of lipid nanostructures and biological membranes. He is devoted to higher education, basic research in biophysics and close contacts to clinical practice. Prof. Iglic was visiting scientist and professor at �bo Academy University in Turku (Finland), Friedrich Schiller University in Jena (Germany) and Czech Technical University in Prague (Czech Republic). He established collaborations with researchers from different universities across the Europe, USA and India and was supervisor of many M.Sc., Ph.D. and postdoctoral students from Slovenia, Czech Republic, Poland, Iran, Bulgaria, Germany, India and Israel. Since 2009 is the editor of Elsevier book series �Advances in Planar Lipid Bilayers and Liposomes� (APLBL). Michael Rappolt Professor of Lipid Biophysics, University of Leeds, UK. Michael Rappolt has been appointed as Professor of Lipid Biophysics (School of Food Science and Nutrition) in April 2013. He received his MSc and PhD in physics from the University of Hamburg and achieved his habilitation at the University of Ljubljana in the Faculty of Health Sciences. He was Senior Researcher at the Synchrotron Trieste Outstation (Italy), Institute of Biophysics and Nanosystems Research (Austrian Academy of Sciences), before becoming Assistant Professor at Graz University of Technology. Professor Michael Rappolt is a leading authority on investigating the structure and dynamics of lipid membranes using small-angle X-ray scattering. His recent research activities have concentrated on the study of drug/membrane interactions with potential applications to drug delivery and food. Further research topics concentrate on characterising crystallization processes in food, the investigation of colloid interfaces and the determination of particle structures on the nanoscale. He also seeks to transfer standard measurement techniques applied in food research - such as mechanic (sound and shear) and thermodynamic sample manipulations to synchrotron sites - to understand food on a smaller (nanometre) and faster (microsecond) scale. Patricia Losada Perez Professor, University of Cologne, Germany. Ana Garcia-Saez gained her PhD at the Department of Biochemistry and Molecular Biology, University of Valencia, Spain in 2005, and then worked as a Post-doc at BioTec, TU Dresden, Germany. From 2013, she was a professor at the Interfaculty Institute for Biochemistry (IFIB), Universit�t T�bingen, Germany before moving to University of Cologne as a professor in October 2019. Since 2010, Ana was also the Max Planck Research Group's Leader and the Deutsches Krebsforschungzentrum (DKFZ) Junior Group's Leader at Bioquant, Heidelberg, Germany, from 2010 to 2013, and has been a Young Investigator as part of the EMBO Young Investigator Programme since 2017.
Ana Garcia-Saez's research areas include Cell Death & Biophysics, Molecular and Cellular Biology, and Biochemistry & Advanced Microscopy. Though she is also involved in and takes an active interest in Membrane organization, apoptosis regulation, Bcl-2 proteins, membrane dynamics, biophysics, and single molecule techniques. She has received numerous fellowships and awards, including the European Research Council (ERC) Starting Grant, the Max-Planck Gesellschaft Postdoctoral scholarship, and the Marie Curie Intra European fellowship, among others, and has been widely published in the field of membrane biochemistry.