+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

The Global Market for Non-Graphene 2D Materials- Product Image
The Global Market for Non-Graphene 2D Materials- Product Image

The Global Market for Non-Graphene 2D Materials

  • ID: 5354095
  • Report
  • June 2021
  • Region: Global
  • 125 Pages
  • Future Markets, Inc

Due to its exceptional transport, mechanical and thermal properties, graphene has been at the forefront of nanomaterials research over the past few years. Its development has enabled researchers to explore other 2D layered materials, such as the transition metal dichalcogenides (TMD), a wide variety of oxides and nitrides and clays. Several types are now commercially available from advanced materials producers.

2D materials covered in this report include:

  • transition metal dichalcogenides (TMD).
  • hexagonal boron nitride (h-BN).
  • MXenes.
  • borophene.
  • phosphorene.
  • graphitic carbon nitride.
  • germanene.
  • graphane.
  • graphdiyne.
  • stanene/tinene.
  • tungsten diselenide.
  • rhenium disulfide.
  • diamene.
  • silicene.
  • antimonene.
  • indium selenide.
  • layered double hydroxides. 

Report contents include:

  • Properties of 2D materials.
  • Applications of 2D materials.
  • Addressable markets for 2D materials.
  • Production and pricing of 2D materials. 
  • Profiles of 2D materials producers and suppliers.
Note: Product cover images may vary from those shown

1 INTRODUCTION  
1.1 What are 2D materials?  
1.2 Exceptional properties  
1.3 Comparative analysis of graphene and other 2D materials  
1.4 Commercial opportunities  
 
2 TYPES OF 2D MATERIALS  
2.1.1 Layered van der Waals solids  
2.1.2 Layered ionic solids  
2.1.3 Surface-assisted elemental nanolayered solids  
 
3 2D MATERIALS PRODUCTION METHODS  
3.1 Top-down exfoliation  
3.2 Bottom-up synthesis  
 
4 HEXAGONAL BORON-NITRIDE (h-BN)  
4.1 Properties  
4.2 Applications and markets  
4.2.1 Electronics  
4.2.2 Fuel cells  
4.2.3 Adsorbents  
4.2.4 Photodetectors  
4.2.5 Textiles  
4.2.6 Biomedical  
4.3 Market opportunity for hexagonal boron-nitride  
 
5 MXENES  
5.1 Properties  
5.2 Applications  
5.2.1 Catalysts  
5.2.2 Hydrogels  
5.2.3 Energy storage devices  
5.2.3.1 Electrodes for Li-ion batteries  
5.2.3.2 Na-ion batteries  
5.2.3.3 Supercapacitors  
5.2.4 Sensors  
5.2.4.1 Wearable sensors  
5.2.4.2 Stain sensors  
5.2.4.3 Pressure sensors  
5.2.4.4 Biosensors  
5.2.4.5 Gas sensors  
5.2.5 Adsorbents  
5.2.6 Membrane separation  
5.3 Market opportunity for MXenes  
 
6 TRANSITION METAL DICHALCOGENIDES  
6.1 Properties  
6.1.1 Molybdenum disulphide (MoS2)  
6.1.2 Tungsten ditelluride (WTe2)  
6.2 Applications  
6.2.1 Electronics  
6.3 Properties  
6.4 Applications  
6.4.1 Electronics  
6.4.2 Photovoltaics  
6.4.3 Electrocatalysis  
6.4.4 Piezoelectrics  
6.4.5 Sensors  
6.4.6 Filtration  
6.4.7 Batteries and supercapacitors  
6.4.8 Fiber lasers  
6.5 Market opportunity for TMDs  
 
7 BOROPHENE  
7.1 Properties  
7.2 Applications  
7.2.1 Energy storage  
7.2.2 Electronics  
7.2.3 Sensors  
7.2.4 Hydrogen storage  
7.3 Market opportunity for borophene  
 
8 PHOSPHORENE  
8.1 Properties  
8.1.1 Fabrication methods  
8.1.2 Challenges for the use of phosphorene in devices  
8.2 Applications  
8.2.1 Electronics  
8.2.2 Field effect transistors  
8.2.3 Batteries  
8.2.3.1 Lithium-ion batteries (LIB)  
8.2.3.2 Sodium-ion batteries  
8.2.3.3 Lithium–sulfur batteries  
8.2.4 Supercapacitors  
8.2.5 Photodetectors  
8.2.6 Sensors  
8.3 Market opportunity for phosphorene  
 
9 GRAPHITIC CARBON NITRIDE (g-C3N4)  
9.1 Properties  
9.2 Synthesis  
9.3 C2N  
9.4 Applications  
9.4.1 Electronics  
9.4.2 Filtration membranes  
9.4.3 Photocatalysts  
9.4.4 Batteries  
9.4.5 Sensors  
9.5 Market opportunity for graphitic carbon nitride  
 
10 GERMANENE  
10.1 Properties  
10.2 Applications  
10.2.1 Electronics  
10.2.2 Batteries  
10.3 Market opportunity for germanene  
 
11 GRAPHDIYNE  
11.1 Properties  
11.2 Applications  
11.2.1 Electronics  
11.2.2 Batteries  
11.2.2.1 Lithium-ion batteries (LIB)  
11.2.2.2 Sodium ion batteries  
11.2.3 Separation membranes  
11.2.4 Water filtration  
11.2.5 Photocatalysts  
11.2.6 Photovoltaics  
11.3 Market opportunity for graphdiyne  
 
12 GRAPHANE  
12.1 Properties  
12.2 Applications  
12.2.1 Electronics  
12.2.2 Hydrogen storage  
12.3 Market opportunity for graphane  
 
13 RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)  
13.1 Properties  
13.2 Applications  
13.2.1 Electronics  
13.3 Market opportunity for rhenium disulfide (ReS2) and diselenide (ReSe2)  
 
14 SILICENE  
14.1 Properties  
14.2 Applications  
14.2.1 Electronics  
14.2.2 Photovoltaics  
14.2.3 Thermoelectrics  
14.2.4 Batteries  
14.2.5 Sensors  
14.3 Market opportunity for silicene  
 
15 STANENE/TINENE  
15.1 Properties  
15.2 Applications  
15.2.1 Electronics  
15.3 Market opportunity for stanine/tinene  
 
16 ANTIMONENE  
16.1 Properties  
16.2 Applications  
16.3 Market opportunity for antimonene  
 
17 DIAMENE  
17.1 Properties  
17.2 Applications  
17.3 Market opportunity for diamene  
 
18 INDIUM SELENIDE 
18.1 Properties 
18.2 Applications 
18.2.1 Electronics 
18.3 Market opportunity for indium selenide 
 
19 LAYERED DOUBLE HYDROXIDES 
19.1 Properties 
19.2 Applications 
19.2.1 Environmental 
19.2.2 Hydrogen generation 
19.2.3 Supercapacitors 
19.2.4 Batteries 
19.2.5 Photovoltaics 
19.2.6 Catalysis 
19.2.7 Biomaterials 
19.3 Market opportunity for layered double hydroxides 
 
20 2D MATERIALS PRODUCER AND SUPPLIER PROFILES 
 
21 RESEARCH METHODOLOGY 
21.1 Technology Readiness Level (TRL) 
 
22 REFERENCES 
 
List of Tables
Table 1. Comparative analysis of graphene and other 2-D nanomaterials.  
Table 2. Applications analysis of 2D materials.  
Table 3. 2D materials types.  
Table 4. Comparison of top-down exfoliation methods to produce 2D materials.  
Table 5. Comparison of the bottom-up synthesis methods to produce 2D materials.  
Table 6. 2D Materials production methods.  
Table 7. Applications of MXenes.  
Table 8. TRL for transition metal dichalcogenides (TMD).  
Table 9. Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2.  
Table 10. Prices of commercially available 2D materials. 
Table 11. Technology Readiness Level (TRL) Examples. 
 
List of Figures
Figure 1. Schematic of 2-D materials.  
Figure 2. Structure of hexagonal boron nitride.  
Figure 3. BN nanosheet textiles application.  
Figure 4. TRL for hexagonal boron-nitride.  
Figure 5. Structure diagram of Ti3C2Tx.  
Figure 6. TRL for MXenes.  
Figure 7. Left: Molybdenum disulphide (MoS2). Right: Tungsten ditelluride (WTe2)  
Figure 8. SEM image of MoS2.  
Figure 9. Atomic force microscopy image of a representative MoS2 thin-film transistor.  
Figure 10. Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge.  
Figure 11. Borophene schematic.  
Figure 12. TRL for hexagonal borophene.  
Figure 13. Black phosphorus structure.  
Figure 14. Black Phosphorus crystal.  
Figure 15. Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation.  
Figure 16. TRL for hexagonal phosphorene.  
Figure 17: Graphitic carbon nitride.  
Figure 18. Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology.  
Figure 19. TRL for Graphitic carbon nitride.  
Figure 20. Schematic of germanene.  
Figure 21. TRL for Germanene.  
Figure 22. Graphdiyne structure.  
Figure 23. TRL for Graphdiyne.  
Figure 24. Schematic of Graphane crystal.  
Figure 25. TRL for Graphane.  
Figure 26. Schematic of a monolayer of rhenium disulfide.  
Figure 27. TRL for rhenium disulfide (ReS2) and diselenide (ReSe2).  
Figure 28. Silicene structure.  
Figure 29. Monolayer silicene on a silver (111) substrate.  
Figure 30. Silicene transistor.  
Figure 31. TRL for silicene.  
Figure 32. Crystal structure for stanene.  
Figure 33. Atomic structure model for the 2D stanene on Bi2Te3(111).  
Figure 34. TRL for Stanene/tinene.  
Figure 35. TRL for Antimonene  
Figure 36. TRL for diamene.  
Figure 37. Schematic of Indium Selenide (InSe). 
Figure 38. TRL for indium selenide. 
Figure 39. TRL for layered double hydroxides. 

Note: Product cover images may vary from those shown

Loading
LOADING...

Adroll
adroll