+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Computational Modelling and Simulations for Designing of Corrosion Inhibitors. Fundamentals and Realistic Applications

  • Book

  • April 2023
  • Elsevier Science and Technology
  • ID: 5638167

Computational Modeling and Simulations for Designing of Corrosion Inhibitors: Fundamentals and Realistic Applications offers a collection of major advancements in the field of computational modeling for the design and testing of corrosion inhibition effectiveness of organic corrosion inhibitors. This guide presents the latest developments in molecular modeling of organic compounds using computational software, which has emerged as a powerful approach for theoretical determination of corrosion inhibition potentials of organic compounds. The book covers common techniques involved in theoretical studies of corrosion inhibition potentials, and mechanisms such as density functional theory, molecular dynamics, Monte Carlo simulations, artificial neural networks, and quantitative structure-activity relationship.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

Part 1. Fundamental and Basics of corrosion mechanism 1. Corrosion Inhibition: Current trends and challenges 2. Theory of Corrosion and Corrosion Inhibition 3. Organic corrosion inhibitors 4. Deep understanding of corrosion inhibition mechanism based on first-principle calculations 5. Molecular modelling in corrosion inhibition assessments

Part 2. Molecular modelling of corrosion inhibition: Advantages and challenges 6. DFT based molecular modelling 7. MD based computational modelling 8. MC simulation based molecular modelling 9. QSAR and Artificial neural network (ANN) based molecular modelling 10. MEPTIC and Machine Learning Approaches of corrosion inhibition 11. Explicit Modelling of Corrosion Inhibition

Part 3. Basic parameters derived from computational modelling 12. Electrochemical principles of corrosion inhibition: fundamental and computational aspects of DFT 13. DFT-based chemical reactivity concepts, calculations, and their application to designing green corrosion inhibitors 14. Theories and radial distribution function of MD and MC simulations 15. Important parameters derived from MC and MD simulations 16. Theories, methods and the parameters of QSAR and ANN

Part 4. Theoretical insight in designing green corrosion inhibitors 17. Theoretical calculations-based results for plan extract as green corrosion inhibitors 18. Aliphatic organic compounds as corrosion inhibitors for ferrous and nonferrous metals 19. Nitrogen containing heterocyclic compounds as green corrosion inhibitors 20. Oxygen containing heterocyclic compounds as green corrosion inhibitors 21. Phosphorus containing molecules as green corrosion inhibitors 22. Sulphur containing heterocyclic compounds as green corrosion inhibitors 23. Carbohydrates and derivatives as green corrosion inhibitors 24. Pharmaceutical drugs as prominent corrosion inhibitors 25. Ionic liquids as green corrosion inhibitors 26. QSAR and ANN based results for designing corrosion inhibitors

Authors

Dakeshwar Kumar Verma Department of Chemistry, Government Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh, India. Dakeshwar Kumar Verma is Assistant Professor of Chemistry at Government Digvijay Autonomous Postgraduate College, Rajnandgaon, India. His research is mainly focused on the preparation and design of organic compounds for various applications. Chandrabhan Verma Researcher, Department of Chemical and Petroleum Engineering, Khalifa University, Abu Dhabi, United Arab Emirates. Chandrabhan Verma is researcher in the Department of Chemical and Petroleum Engineering at Khalifa University, Abu Dhabi, United Arab Emirates. His research mainly focuses on synthesising and designing environmentally friendly corrosion inhibitors useful for industrial applications. Jeenat Aslam Department of Chemistry, College of Science, Taibah University, Yanbu, Al-Madina, Saudi Arabia.

Dr. Jeenat Aslam is currently working as an Associate Professor in the Department of Chemistry at the College of Science, Taibah University, Yanbu, Al-Madina, Saudi Arabia. She obtained her PhD degree in chemistry from Aligarh Muslim University, Aligarh, India. Her research is mainly focused on materials and corrosion, nanotechnology, and surface chemistry. Dr. Jeenat has published several research and review articles in peer-reviewed international journals. In addition, she has authored more than 40 book chapters and edited more than 30 books for different prestigious publishers.