+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

The Global Sustainable Biofuels & E-Fuels Market 2026-2036

  • PDF Icon

    Report

  • 535 Pages
  • August 2025
  • Region: Global
  • Future Markets, Inc
  • ID: 6008377

The global sustainable biofuels and e-fuels market represents one of the most rapidly expanding sectors in the energy transition landscape, driven by urgent decarbonization imperatives and ambitious net-zero commitments worldwide.  The traditional biofuels segment continues to dominate the sustainable fuels landscape. Advanced biofuels are experiencing particularly strong growth, with renewable diesel and sustainable aviation fuel (SAF) leading the charge.  E-fuels represent the fastest-growing segment within sustainable fuels, albeit from a smaller base. 

Several critical factors are propelling market growth. Environmental regulations and carbon reduction mandates are primary drivers, with over 80 countries implementing liquid biofuel policies.  Policy support remains crucial, with initiatives like the EU's Renewable Energy Directive, the US Inflation Reduction Act providing USD 9.4 billion in biofuel support to 2031, and various SAF mandates driving adoption. Corporate sustainability commitments from airlines, shipping companies, and automotive manufacturers are creating substantial demand for sustainable fuel alternatives. The sector is witnessing rapid technological advancement across multiple production pathways. For biofuels, this includes second-generation technologies like pyrolysis, gasification, hydrothermal liquefaction, and Fischer-Tropsch synthesis, alongside innovative feedstock utilization from waste materials and algae. E-fuel production is advancing through improvements in electrolyzers, carbon capture technologies, and power-to-liquid synthesis processes.

Despite impressive growth, significant scaling is required to meet climate targets. While renewable fuel uptake would need to nearly double by 2030 to be on track with a net zero trajectory, it is set to expand only near 20% under existing market conditions. This gap presents both challenges and opportunities, suggesting the market's potential extends far beyond current projections as supportive policies, technology costs, and infrastructure development accelerate the transition to sustainable transportation fuels.

The Global Sustainable Biofuels and E-Fuels Market 2026-2036 report provides an in-depth analysis, covering market dynamics, technological innovations, production pathways, regional developments, and strategic competitive intelligence across all major fuel categories. The report encompasses the full spectrum of sustainable fuel technologies, from conventional first-generation biofuels to advanced second and third-generation biofuels, synthetic e-fuels, and emerging fourth-generation biotechnologies.

With detailed coverage of 230+ company profiles and extensive analysis of production technologies including pyrolysis, gasification, hydrothermal liquefaction, Fischer-Tropsch synthesis, and power-to-liquid processes, this report serves as the definitive guide for stakeholders navigating the complex sustainable fuels ecosystem.

Report contents include:

  • Comprehensive decarbonization analysis and comparison to fossil fuels
  • Government policies and regulatory frameworks driving market growth
  • Market drivers, challenges, and sustainability assessments
  • Liquid biofuels market forecasts 2026-2036 by type and production
  • Transport decarbonization strategies and industry developments 2022-2025
  • Regional market analysis covering USA, EU, China, India, and Brazil
  • Biofuels Market Analysis
    • Global biofuels market overview with diesel and gasoline substitutes analysis
    • SWOT analysis and comparative cost analysis by biofuel type
    • Comprehensive feedstock analysis: first, second, third, and fourth-generation
    • Energy crops, agricultural residues, forestry waste, and organic waste assessment
    • Advanced production technologies including pyrolysis, gasification, and HTL
    • Biocrude oil refining, upgrading technologies, and biomethanol production
    • Alcohol-to-jet (ATJ) and alcohol-to-gasoline (ATG) conversion processes
  • Hydrocarbon Biofuels
    • Biodiesel market analysis by generation with production technologies
    • Renewable diesel vs biodiesel comparison and market dynamics
    • Sustainable Aviation Fuel (SAF) market with production pathways and pricing
    • Bio-naphtha markets, applications, and production capacity analysis
    • Recent market developments 2023-2025 and company activity tracking
    • Global consumption forecasts and price trend analysis
  • Alcohol Fuels & Biomass-Based Gas
    • Biomethanol production pathways and market applications
    • Bioethanol technology including cellulosic ethanol production
    • Biobutanol production and market positioning
    • Biomethane, biosyngas, and biohydrogen market analysis
    • Bio-LNG applications in trucks and marine transport
    • Carbon capture from biogas and bio-DME development
  • Chemical Recycling & Advanced Technologies
    • Plastic pyrolysis and used tire conversion to biofuels
    • Co-pyrolysis of biomass and plastic waste technologies
    • Gasification technologies for syngas conversion to methanol
    • Hydrothermal cracking and chemical recycling SWOT analysis
  • Electrofuels (E-Fuels) Market
    • E-fuel production technologies and efficiency analysis
    • Green hydrogen production and electrolyzer technologies
    • CO2 capture systems and Direct Air Capture (DAC) technologies
    • Syngas production including RWGS and SOEC technologies
    • E-methane and e-methanol production pathways
    • Solar power integration in e-fuels production
    • Current and planned e-fuel production facilities analysis
  • Emerging Technologies & Alternative Fuels
    • Algae-derived biofuels including third and fourth-generation technologies
    • Microalgae cultivation systems and photobioreactor technologies
    • Green ammonia production and marine fuel applications
    • Biofuels from carbon capture and utilization
    • Bio-oils (pyrolysis oil) production and applications
    • Refuse-derived fuels (RDF) market analysis

The report features detailed profiles of 230+ leading companies across the sustainable fuels value chain, including: Aduro Clean Technologies, Aemetis, Agilyx, Air Company, Agra Energy, Aircela, Algenol, Alpha Biofuels, AM Green, Andritz AG, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates, Arcadia eFuels, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BDI-BioEnergy International, BEE Biofuel, Bio-Oils, Biofy, Biofine Technology, BiogasClean, Biojet, Bloom Biorenewables, BlueAlp Technology, Blue BioFuels, Braven Environmental, Brightmark Energy, bse Methanol, BTG Bioliquids, Byogy Renewables, C1 Green Chemicals, Caphenia, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Recycling International, Carbon Sink, Carbyon, Cargill, Cassandra Oil, Casterra Ag, Celtic Renewables, Cereal Process Technologies, CERT Systems, CF Industries Holdings, Chitose Bio Evolution, Circla Nordic, CleanJoule, Climeworks, CNF Biofuel, Concord Blue Engineering, Cool Planet Energy Systems, Corsair Group International, Coval Energy, Crimson Renewable Energy, C-Zero, D-CRBN, Diamond Green Diesel, Dimensional Energy, Royal DSM, Dioxide Materials, Dioxycle, Domsjö Fabriker, DuPont, EcoCeres, Eco Environmental, Eco Fuel Technology, Electro-Active Technologies, Emerging Fuels Technology, Encina Development Group, Enerkem, Eneus Energy, Enexor BioEnergy, Eni Sustainable Mobility, Ensyn Corporation, Euglena, EnviTec Biogas, Firefly Green Fuels, Forge Hydrocarbons Corporation, FuelPositive, Fuenix Ecogy, Fulcrum BioEnergy, Galp Energia, GenCell Energy, Genecis Bioindustries, Gevo, GIDARA Energy, Graforce Hydro, Granbio Technologies, Greenergy, Green COP, Green Earth Institute, Green Fuel, Hago Energetics, Haldor Topsoe, Handerek Technologies, Hero BX, Honeywell, HutanBio, Hyundai Oilbank, Oy Hydrocell, Hy2Gen, Hydrogenious LOHC, HYCO1, HydGene Renewables, Ineratec, Infinitree, Infinium Electrofuels, Innoltek, Jet Zero Australia, Jilin COFCO Biomaterial Corporation, Jupiter Ionics, Kaidi, Kanteleen Voima, KEW Technology, Khepra, Klean Industries, Krajete, Kvasir Technologies, LanzaJet, Lanzatech, Lectrolyst, Licella, Liquid Wind, Lootah Biofuels, Lummus Technology, LXP Group, Mash Energy, Mercurius Biorefining, MOFWORX, Mote, Neogen, NeoZeo, Neste, New Hope Energy, NewEnergyBlue, NextChem, Nexus Fuels, Nordic ElectroFuel, Nordsol, Norsk e-Fuel, Nova Pangaea Technologies, Novozymes, Obeo Biogas, Oberon Fuels, Obrist Group, Oceania Biofuels, O.C.O, OMV, Opus 12, ORLEN Południe, OXCCU, OxEon Energy, Phillips 66, Phoenix BioPower, Photanol, Phycobloom, Phytonix Corporation, Plastic2Oil, Plastogaz, Polycycl, Praj Industries, Preem, Prometheus Fuels, Proton Power, Provectus Algae, ProPika, Pure Lignin Environmental Technology, Pyrochar and more....

This report provides essential strategic intelligence for energy companies, technology developers, investors, policymakers, and industry stakeholders seeking to understand market opportunities, competitive dynamics, and technology trends shaping the future of sustainable transportation fuels through 2036.

Table of Contents

1           EXECUTIVE SUMMARY
1.1        Decarbonization
1.2        Comparison to fossil fuels
1.3        Role in the circular economy
1.4        Government policies
1.5        Market drivers
1.6        Market challenges
1.7        Liquid biofuels market
1.7.1     Liquid biofuel production and consumption (in thousands of m3), 2000-2024
1.7.2     Liquid biofuels market 2020-2036, by type and production.
1.8        Sustainability of biofuels
1.9        Transport decarbonization
1.10      Industry developments 2022-2025
1.11      Biofuels markets by region
1.11.1   USA
1.11.2   EU
1.11.3   China
1.11.4   India
1.11.5   Brazil
1.12      Sustainability of biofuels

2           BIOFUELS
2.1        Overview
2.2        The global biofuels market
2.2.1     Diesel substitutes and alternatives
2.2.2     Gasoline substitutes and alternatives
2.3        SWOT analysis: Biofuels market
2.4        Comparison of biofuel costs 2024, by type
2.5        Types
2.5.1     Solid Biofuels
2.5.2     Liquid Biofuels
2.5.3     Gaseous Biofuels
2.5.4     Conventional Biofuels
2.5.5     Advanced Biofuels
2.6        Refineries
2.7        Feedstocks
2.7.1     First-generation (1-G)
2.7.2     Second-generation (2-G)
2.7.2.1  Lignocellulosic wastes and residues
2.7.2.2  Biorefinery lignin
2.7.3     Third-generation (3-G)
2.7.3.1   Algal biofuels
2.7.3.1.1           Properties
2.7.3.1.2           Advantages
2.7.4      Fourth-generation (4-G)
2.7.5      Advantages and disadvantages, by generation
2.7.6      Energy crops
2.7.6.1   Feedstocks
2.7.6.2   SWOT analysis
2.7.7      Agricultural residues
2.7.7.1   Feedstocks
2.7.7.2   SWOT analysis
2.7.8      Manure, sewage sludge and organic waste
2.7.8.1   Processing pathways
2.7.8.2   SWOT analysis
2.7.9      Forestry and wood waste
2.7.9.1   Feedstocks
2.7.9.2   SWOT analysis
2.7.10    Feedstock costs
2.8         Biofuel Government policy
2.8.1      Transport emissions
2.8.2      Decarbonization of transportation
2.8.3      Sustainable fuel policy
2.8.4      Biofuel incentives
2.9         Advanced biofuels and production technologies
2.9.1      Introduction
2.9.2      Pyrolysis technologies
2.9.2.1   Introduction
2.9.2.2   Pyrolysis products & applications
2.9.2.3   Decomposition methods
2.9.2.4   Catalytic pyrolysis of plastic
2.9.2.5   Composition of bio-oil & plastic pyrolysis oil
2.9.2.6   Companies
2.9.3      Gasification technologies
2.9.3.1   Introduction
2.9.3.2   Pre-treatment methods for gasification of biomass and plastics
2.9.3.3   Gasifier types
2.9.3.4   Challenges
2.9.3.5   Companies
2.9.4      Hydrothermal liquefaction (HTL) technologies
2.9.4.1   Introduction
2.9.4.2   Hydrothermal liquefaction feedstocks - biomass
2.9.4.3   Hydrothermal liquefaction feedstocks - plastics
2.9.4.4   HTL reactor designs
2.9.4.5   HTL catalysts
2.9.4.6   Companies
2.9.5      Fischer-Tropsch (FT) synthesis
2.9.5.1   Introduction
2.9.5.2   Syngas from gasification or pyrolysis
2.9.5.3   FT catalysts
2.9.5.4   FT reactor designs
2.9.5.5   Companies
2.9.6      Biocrude oil refining & upgrading
2.9.6.1   Introduction
2.9.6.2   Refining & upgrading processes
2.9.6.3   Hydrotreating processes
2.9.6.4   Hydrocracking process
2.9.6.5   Isomerization process
2.9.6.6   Dewaxing process
2.9.6.7   Fractional distillation process
2.9.6.8   Companies
2.9.7      Biomethanol production
2.9.7.1   Introduction
2.9.7.2   Traditional methanol production
2.9.7.3   Biomethanol from biogas reforming
2.9.7.4   Biomethanol from biomass gasification
2.9.7.5   Biomethanol from hydrothermal gasification
2.9.7.6   Companies
2.9.8      Alcohol-to-jet (ATJ) & alcohol-to-gasoline (ATG): methanol & ethanol
2.9.8.1   Introduction
2.9.8.2   Ethanol feedstocks
2.9.8.3   Methanol feedstocks
2.9.8.4   Methanol-to-gasoline (MTG) process
2.9.8.5   Companies

3           HYDROCARBON BIOFUELS
3.1        Biodiesel
3.1.1     Biodiesel by generation
3.1.2     SWOT analysis
3.1.3     Biodiesel production
3.1.3.1  Pyrolysis of biomass
3.1.3.2  Vegetable oil transesterification
3.1.3.3  Vegetable oil hydrogenation (HVO)
3.1.3.3.1           Production process
3.1.3.4  Biodiesel from tall oil
3.1.3.5  Fischer-Tropsch BioDiesel
3.1.3.6  Hydrothermal liquefaction of biomass
3.1.3.7  CO2 capture and Fischer-Tropsch (FT)
3.1.3.8  Dymethyl ether (DME)
3.1.4     Biodiesel Projects
3.1.5     Recent market developments 2023-2025
3.1.6     Prices
3.1.7     Companies
3.1.8     Global consumption
3.2        Renewable diesel
3.2.1     Production
3.2.2     Biodiesel vs renewable diesel
3.2.3     SWOT analysis
3.2.4     Global consumption
3.2.5     Prices
3.3        Sustainable aviation fuel (SAF)
3.3.1     Description
3.3.2     Jet fuel composition & types
3.3.3     SAF as a drop-in replacement for Jet A-1
3.3.4     Recent market developments
3.3.5     SWOT analysis
3.3.6     Global production and consumption
3.3.7     Production pathways
3.3.8     Prices
3.3.9     Sustainable aviation fuel production capacities
3.3.10   Challenges
3.3.11   Companies
3.3.12   Global consumption
3.4        Bio-naphtha
3.4.1     Overview
3.4.2     SWOT analysis
3.4.3     Markets and applications
3.4.4     Prices
3.4.5     Production capacities, by producer, current and planned
3.4.6     Production capacities, total (tonnes), historical, current and planned

4           ALCOHOL FUELS
4.1        Biomethanol
4.1.1     SWOT analysis
4.1.2     Methanol-to gasoline technology
4.1.2.1  Production processes
4.1.2.1.1           Biomethanol from Biogas Reforming
4.1.2.1.2           Biomethanol from Hydrothermal Gasification
4.1.2.1.3           Anaerobic digestion
4.1.2.1.4           Biomass gasification
4.1.2.1.5           Power to Methane
4.1.3     Methanol Synthesis Companies
4.2        Bioethanol
4.2.1     Technology description
4.2.2     1G Bio-Ethanol
4.2.3     SWOT analysis
4.2.4     Alcohol-to-jet (ATJ) & alcohol-to-gasoline (ATG): methanol & ethanol
4.2.4.1  ATJ and ATG processes
4.2.4.2  Ethanol Feedstocks
4.2.4.3  Methanol-to-Gasoline (MTG) and Methanol-to-Jet (MTJ) processes
4.2.4.4  Companies
4.2.5     Cellulosic Ethanol Production
4.2.5.1  Feedstocks
4.2.5.2  Companies
4.2.6     Sulfite spent liquor fermentation
4.2.7     Gasification
4.2.7.1  Biomass gasification and syngas fermentation
4.2.7.2  Biomass gasification and syngas thermochemical conversion
4.2.8     CO2 capture and alcohol synthesis
4.2.9     Biomass hydrolysis and fermentation
4.2.9.1  Separate hydrolysis and fermentation
4.2.9.2  Simultaneous saccharification and fermentation (SSF)
4.2.9.3  Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
4.2.9.4  Simultaneous saccharification and co-fermentation (SSCF)
4.2.9.5  Direct conversion (consolidated bioprocessing) (CBP)
4.2.10   Global ethanol consumption
4.3        Biobutanol
4.3.1     Production
4.3.2     Prices

5           BIOMASS-BASED GAS
5.1        Feedstocks
5.1.1     Biomethane
5.1.2     Production pathways
5.1.2.1  Landfill gas recovery
5.1.2.2  Anaerobic digestion
5.1.2.3  Thermal gasification
5.1.3     SWOT analysis
5.1.4     Global production
5.1.5     Prices
5.1.5.1  Raw Biogas
5.1.5.2  Upgraded Biomethane
5.1.6     Bio-LNG
5.1.6.1  Markets
5.1.6.1.1           Trucks
5.1.6.1.2           Marine
5.1.6.2  Production
5.1.6.3  Plants
5.1.7     bio-CNG (compressed natural gas derived from biogas)
5.1.8     Carbon capture from biogas
5.2        Biosyngas
5.2.1     Production
5.2.2     Prices
5.3        Biohydrogen
5.3.1     Description
5.3.2     SWOT analysis
5.3.3     Production of biohydrogen from biomass
5.3.3.1  Biological Conversion Routes
5.3.3.1.1           Bio-photochemical Reaction
5.3.3.1.2           Fermentation and Anaerobic Digestion
5.3.3.2  Thermochemical conversion routes
5.3.3.2.1           Biomass Gasification
5.3.3.2.2           Biomass Pyrolysis
5.3.3.2.3           Biomethane Reforming
5.3.4     Applications
5.3.5     Prices
5.4        Biochar in biogas production
5.5        Bio-DME

6           CHEMICAL RECYCLING FOR BIOFUELS
6.1        Plastic pyrolysis
6.2        Used tires pyrolysis
6.2.1     Conversion to biofuel
6.3        Co-pyrolysis of biomass and plastic wastes
6.4        Gasification
6.4.1     Syngas conversion to methanol
6.4.2     Biomass gasification and syngas fermentation
6.4.3     Biomass gasification and syngas thermochemical conversion
6.5        Hydrothermal cracking
6.6        SWOT analysis

7           ELECTROFUELS (E-FUELS)
7.1        Introduction
7.1.1     E-Fuel Production Technologies
7.1.2     E-fuel uses
7.1.3     Comparison of e-fuels to fossil and biofuels
7.1.4     E-fuel production efficiencies
7.1.5     Costs
7.1.6     Benefits of e-fuels
7.1.7     Production pathways
7.2        Green hydrogen
7.2.1     Electrolyzer Technologies
7.2.2     Companies
7.3        CO2 capture
7.3.1     Overview
7.3.2     CO2 Capture Systems
7.3.3     Carbon capture technologies
7.3.4     Direct Air Capture (DAC) technology for e-fuel production
7.4        Syngas production
7.4.1     Overview
7.4.2     Syngas Production Technologies
7.4.2.1  Reverse Water Gas Shift (RWGS)
7.4.2.2  Direct Fischer-Tropsch Synthesis: CO2 to Hydrocarbons
7.4.2.3  Low-Temperature Electrochemical CO2 Reduction
7.4.2.4  Solid Oxide Electrolysis Cells (SOECs)
7.4.3     Solar power in E-Fuels
7.4.3.1  Overview
7.4.3.2  Key advantages
7.4.3.3  Projects
7.4.4     Companies
7.5         E-methane
7.5.1     Overview
7.5.2     Methanation
7.5.2.1  Thermocatalytic methanation
7.5.2.2  Biological methanation
7.5.2.3  Companies
7.6         E-methanol
7.6.1     Overview
7.6.2     E-Methanol Production
7.6.3     Direct methanol synthesis
7.6.4     Companies
7.7        SWOT analysis
7.8        Production
7.8.1     eFuel production facilities, current and planned
7.9        Electrolysers
7.10      Prices
7.11      Market challenges
7.12      Companies

8           ALGAE-DERIVED BIOFUELS
8.1        Third & Fourth Generation Biofuel Technologies
8.2        Technology description
8.3        CO2 capture and utilization
8.4        Conversion pathways
8.4.1     Macroalgae
8.4.2     Microalgae / Cyanobacteria
8.4.2.1  Microalgae cultivation for biofuel production
8.4.2.2  Open cultivation systems
8.4.2.3  Closed photobioreactors (PBRs)
8.4.3     Companies
8.4.4     Projects
8.5        SWOT analysis
8.6        Production
8.6.1     Algal Biofuel Production
8.7        Market challenges
8.8        Prices
8.9        Producers

9           GREEN AMMONIA
9.1        Production
9.1.1     Decarbonisation of ammonia production
9.1.2     Green ammonia projects
9.2        Green ammonia synthesis methods
9.2.1     Haber-Bosch process
9.2.2     Biological nitrogen fixation
9.2.3     Electrochemical production
9.2.4     Chemical looping processes
9.3        SWOT analysis
9.4        Blue ammonia
9.4.1     Blue ammonia projects
9.5        Markets and applications
9.5.1     Chemical energy storage
9.5.1.1  Ammonia fuel cells
9.5.2     Marine fuel
9.6        Prices
9.7        Estimated market demand
9.8        Companies and projects

10         BIOFUELS FROM CARBON CAPTURE
10.1      Overview
10.2      CO2 capture from point sources
10.3      Production routes
10.4      SWOT analysis
10.5      Direct air capture (DAC)
10.5.1   Description
10.5.2   Deployment
10.5.3   Point source carbon capture versus Direct Air Capture
10.5.4   Technologies
10.5.4.1            Solid sorbents
10.5.4.2            Liquid sorbents
10.5.4.3            Liquid solvents
10.5.4.4            Airflow equipment integration
10.5.4.5            Passive Direct Air Capture (PDAC)
10.5.4.6            Direct conversion
10.5.4.7            Co-product generation
10.5.4.8            Low Temperature DAC
10.5.4.9            Regeneration methods
10.5.5   Commercialization and plants
10.5.6   Metal-organic frameworks (MOFs) in DAC
10.5.7   DAC plants and projects-current and planned
10.5.8   Markets for DAC
10.5.9   Costs
10.5.10              Challenges
10.5.11              Players and production
10.6      Carbon utilization for biofuels
10.6.1   Production routes
10.6.1.1            Electrolyzers
10.6.1.2            Low-carbon hydrogen
10.6.2   Products & applications
10.6.2.1            Vehicles
10.6.2.2            Shipping
10.6.2.3            Aviation
10.6.2.4            Costs
10.6.2.5            Ethanol
10.6.2.6            Methanol
10.6.2.7            Sustainable Aviation Fuel
10.6.2.8            Methane
10.6.2.9            Algae based biofuels
10.6.2.10         CO2-fuels from solar
10.6.3   Challenges
10.6.4   SWOT analysis
10.6.5   Companies

11         BIO-OILS (PYROLYSIS OIL)
11.1      Description
11.1.1   Advantages of bio-oils
11.2     Production
11.2.1  Biomass Pyrolysis
11.2.2  Plastic Waste Pyrolysis
11.2.3  Catalytic Pyrolysis of Plastic
11.2.4  Costs of production
11.2.5  Upgrading
11.3     Pyrolysis reactors
11.4     SWOT analysis
11.5     Applications
11.6     Bio-oil producers
11.7     Prices

12        REFUSE-DERIVED FUELS (RDF)
12.1     Overview
12.2     Production
12.2.1 Production process
12.2.2 Mechanical biological treatment
12.3     Markets

13        COMPANY PROFILES (233 company profiles)14        RESEARCH METHODOLOGY15        REFERENCES
LIST OF TABLES
Table 1. Government policies on sustainable fuels.
Table 2. Market drivers for biofuels.
Table 3. Market challenges for biofuels.
Table 4. Liquid biofuels market 2020-2036, by type and production.
Table 5. Industry developments in sustainable biofuels & E-fuels 2022-2025.
Table 6. Comparison of biofuels.
Table 7. Comparison of biofuel costs (USD/liter) 2024, by type.
Table 8. Categories and examples of solid biofuel.
Table 9. Comparison of biofuels and e-fuels to fossil and electricity.
Table 10. Classification of biomass feedstock.
Table 11. Biorefinery feedstocks.
Table 12. Feedstock conversion pathways.
Table 13. First-Generation Feedstocks.
Table 14.  Lignocellulosic ethanol plants and capacities.
Table 15. Comparison of pulping and biorefinery lignins.
Table 16. Commercial and pre-commercial biorefinery lignin production facilities and  processes
Table 17. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.
Table 18. Properties of microalgae and macroalgae.
Table 19. Yield of algae and other biodiesel crops.
Table 20. Advantages and disadvantages of biofuels, by generation.
Table 21. Sustainable fuels in transport sectors.
Table 22. Biofuel incentives by country/region.
Table 23. Petroleum product ranges & sustainable fuel alternatives.
Table 24. Pyrolysis products & market applications.
Table 25. Decomposition methods in biomass & plastic pyrolysis.
Table 26. Comparison of pyrolysis technologies.
Table 27. Comparison of pyrolysis and gasification processes.
Table 28. Biodiesel by generation.
Table 29. Comparison of Fossil Diesel, Biodiesel & Renewable Diesel.
Table 30. Biodiesel production techniques.
Table 31. Summary of pyrolysis technique under different operating conditions.
Table 32. Biomass materials and their bio-oil yield.
Table 33. Biofuel production cost from the biomass pyrolysis process.
Table 34. Properties of vegetable oils in comparison to diesel.
Table 35. Main producers of HVO and capacities.
Table 36. Example commercial Development of BtL processes.
Table 37. Pilot or demo projects for biomass to liquid (BtL) processes.
Table 38. Comparison of Biodiesel vs Renewable Diesel: Properties & Engine Compatibility.
Table 39. Biodiesel Projects by Scale, Company and Location.
Table 40. Recent biodiesel market developments 2023-2025.
Table 41. Recent company activity in Biodiesel.
Table 42. Global biodiesel consumption, 2020-2036 (M litres/year).
Table 43. Biodiesel vs renewable diesel: properties & engine compatibility .
Table 44. Global renewable diesel consumption, 2020-2036 (M litres/year).
Table 45. Renewable diesel price ranges.
Table 46. Advantages and disadvantages of Sustainable aviation fuel.
Table 47. Jet fuel composition & types.
Table 48. Recent market developments in Sustainable Aviation Fuel (SAF).
Table 49. Production pathways for Sustainable aviation fuel.
Table 50. Sustainable Aviation Fuel (SAF) Projects by Scale, Company, Location, Technology Pathway, and Start Date.
Table 51. Recent company activity in SAF.
Table 52. Global Sustainable Aviation Fuel (SAF) Consumption 2019-2036 (Million litres/year).
Table 53. Bio-based naphtha markets and applications.
Table 54. Bio-naphtha market value chain.
Table 55. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.
Table 56. Bio-based Naphtha production capacities, by producer.
Table 57.Methanol Production & Colors
Table 58. Main Pathways to Biomethanol Production
Table 59. Comparison of biogas, biomethane and natural gas.
Table 60. 1st Generation Bioethanol Production Processes.
Table 61.Ethanol Feedstocks.
Table 62. Methanol Feedstocks.
Table 63. Methanol-to-Gasoline (MTG) Process Overview.
Table 64. Alcohol-to-Jet (ATJ) Process Steps.
Table 65. MTG vs MTJ Process Comparison.
Table 66. Methanol-to-Gasoline (MTG) Companies.
Table 67. Alcohol-to-Jet (ATJ) Technology Companies.
Table 68. Cellulosic Ethanol Production.
Table 69. Lignocellulosic Biomass Feedstocks.
Table 70. Challenges in Breaking Down Lignocellulosic Biomass.
Table 71. Cellulosic ethanol companies.
Table 72. Processes in bioethanol production.
Table 73. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.
Table 74. Ethanol consumption 2020-2036 (million litres).
Table 75. Properties of petrol and biobutanol.
Table 76. Biogas feedstocks.
Table 77. Existing and planned bio-LNG production plants.
Table 78. Methods for capturing carbon dioxide from biogas.
Table 79. Comparison of different Bio-H2 production pathways.
Table 80. Markets and applications for biohydrogen.
Table 81. Summary of gasification technologies.
Table 82. Overview of hydrothermal cracking for advanced chemical recycling.
Table 83. Technology & Process Developers in E-Fuels by End-Product.
Table 84. E-Fuel Production Costs Breakdown.
Table 85. Applications of e-fuels, by type.
Table 86. Overview of e-fuels.
Table 87. Benefits of e-fuels.
Table 88. E-fuel production efficiencies.
Table 89. Production Pathways for E-Fuels.
Table 90. Electrolyzer Performance Metrics.
Table 91. Overview of Electrolyzer Technologies.
Table 92. Electrolyzer Technology Companies.
Table 93. Main CO2 Capture Systems.
Table 94.Technologies for Carbon Capture
Table 95. Syngas Production Technologies for E-Fuels.
Table 96. Comparison of RWGS & SOEC Co-Electrolysis Routes.
Table 97.Companies using Reverse Water Gas Shift (RWGS) for E-Fuels
Table 98. SOEC & SOFC System Suppliers.
Table 99. Companies in CO2 reduction technologies.
Table 100. Comparison of Thermocatalytic vs Biocatalytic Methanation
Table 101. Methanation Companies
Table 102. Power-to-Methane Projects,
Table 103. Methanol Production & Colors.
Table 104. E-methanol production methods.
Table 105. Main process steps, key equipment, and operating conditions.
Table 106.Companies in Methanol Synthesis
Table 107. eFuel production facilities, current and planned.
Table 108. Main characteristics of different electrolyzer technologies.
Table 109. Market challenges for e-fuels.
Table 110. E-fuels companies.
Table 111. 3rd Generation Biofuel Production Feedstocks
Table 112. Biofuel Production Process Using Macroalgae
Table 113. Biofuel Production Process Using Microalgae / Cyanobacteria.
Table 114. Open vs Closed Algae Cultivation Systems.
Table 115. Microalgae Cultivation System Suppliers: Photobioreactors (PBRs) & Ponds.
Table 116. Algal and Microbial Biofuel Processes & Projects.
Table 117. Algae-derived biofuel producers.
Table 118. Green ammonia projects (current and planned).
Table 119. Blue ammonia projects.
Table 120. Ammonia fuel cell technologies.
Table 121. Market overview of green ammonia in marine fuel.
Table 122. Summary of marine alternative fuels.
Table 123. Estimated costs for different types of ammonia.
Table 124. Main players in green ammonia.
Table 125. Market overview for CO2 derived fuels.
Table 126. Point source examples.
Table 127. Advantages and disadvantages of DAC.
Table 128. Companies developing airflow equipment integration with DAC.
Table 129. Companies developing Passive Direct Air Capture (PDAC) technologies.
Table 130. Companies developing regeneration methods for DAC technologies.
Table 131. DAC companies and technologies.
Table 132. DAC technology developers and production.
Table 133. DAC projects in development.
Table 134. Markets for DAC.
Table 135. Costs summary for DAC.
Table 136. Cost estimates of DAC.
Table 137. Challenges for DAC technology.
Table 138. DAC companies and technologies.
Table 139. Market overview for CO2 derived fuels.
Table 140. Main production routes and processes for manufacturing fuels from captured carbon dioxide.
Table 141. CO2-derived fuels projects.
Table 142. Thermochemical methods to produce methanol from CO2.
Table 143. Pilot plants for CO2-to-methanol conversion.
Table 144. Microalgae products and prices.
Table 145. Main Solar-Driven CO2 Conversion Approaches.
Table 146. Market challenges for CO2 derived fuels.
Table 147. Companies in CO2-derived fuel products.
Table 148. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.
Table 149. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.
Table 150. Comparison of Pyrolysis Technologies.
Table 151. Pyrolysis Products & Market Applications.
Table 152. Main techniques used to upgrade bio-oil into higher-quality fuels.
Table 153. Pyrolysis reactor companies.
Table 154. Markets and applications for bio-oil.
Table 155. Bio-oil producers.
Table 156. Key resource recovery technologies
Table 157. Markets and end uses for refuse-derived fuels (RDF).
Table 158. Granbio Nanocellulose Processes.

LIST OF FIGURES
Figure 1. Liquid biofuel production and consumption (in thousands of m3), 2000-2024.
Figure 2. Distribution of global liquid biofuel production in 2023.
Figure 3. Diesel and gasoline alternatives and blends.
Figure 4. SWOT analysis for biofuels.
Figure 5.  Schematic of a biorefinery for production of carriers and chemicals.
Figure 6. SWOT analysis for energy crops in biofuels.
Figure 7. SWOT analysis for agricultural residues in biofuels.
Figure 8. SWOT analysis for Manure, sewage sludge and organic waste in biofuels.
Figure 9. SWOT analysis for forestry and wood waste in biofuels.
Figure 10. Range of biomass cost by feedstock type.
Figure 11. Pyrolysis reactor designs .
Figure 12. Gasification & Fischer-Tropsch biomass-to-liquid (BtL) pathway.
Figure 13.Alcohol-to-jet (ATJ) process
Figure 14. Regional production of biodiesel (billion litres).
Figure 15. SWOT analysis for biodiesel.
Figure 16. Flow chart for biodiesel production.
Figure 17. Biodiesel (B20) average prices, current and historical, USD/litre, 2012-2024.
Figure 18. Global biodiesel consumption, 2020-2036 (M litres/year).
Figure 19. SWOT analysis for renewable diesel.
Figure 20. Global renewable diesel consumption, 2010-2036 (M litres/year).
Figure 21. SWOT analysis for Sustainable aviation fuel.
Figure 22. Global Sustainable Aviation Fuel (SAF) Production and Consumption 2019-2036 (Million litres/year).
Figure 23. SWOT analysis for bio-naphtha.
Figure 24. Bio-based naphtha production capacities, 2018-2033 (tonnes).
Figure 25. SWOT analysis biomethanol.
Figure 26. Renewable Methanol Production Processes from Different Feedstocks.
Figure 27. Production of biomethane through anaerobic digestion and upgrading.
Figure 28. Production of biomethane through biomass gasification and methanation.
Figure 29. Production of biomethane through the Power to methane process.
Figure 30. SWOT analysis for ethanol.
Figure 31. Ethanol consumption 2020-2036 (million litres).
Figure 32. Biobutanol production route.
Figure 33. Biogas and biomethane pathways.
Figure 34. Overview of biogas utilization.
Figure 35. Schematic overview of anaerobic digestion process for biomethane production.
Figure 36. Schematic overview of biomass gasification for biomethane production.
Figure 37. SWOT analysis for biogas.
Figure 38. Total syngas market by product in MM Nm³/h of Syngas, 2023.
Figure 39. SWOT analysis for biohydrogen.
Figure 40. Waste plastic production pathways to (A) diesel and (B) gasoline
Figure 41. Schematic for Pyrolysis of Scrap Tires.
Figure 42. Used tires conversion process.
Figure 43. Total syngas market by product in MM Nm³/h of Syngas, 2023.
Figure 44. Overview of biogas utilization.
Figure 45. Biogas and biomethane pathways.
Figure 46. SWOT analysis for chemical recycling of biofuels.
Figure 47. Process steps in the production of electrofuels.
Figure 48. Mapping storage technologies according to performance characteristics.
Figure 49. Production process for green hydrogen.
Figure 50. SWOT analysis for E-fuels.
Figure 51. E-liquids production routes.
Figure 52. Fischer-Tropsch liquid e-fuel products.
Figure 53. Resources required for liquid e-fuel production.
Figure 54. Levelized cost and fuel-switching CO2 prices of e-fuels.
Figure 55.  Pathways for algal biomass conversion to biofuels.
Figure 56. SWOT analysis for algae-derived biofuels.
Figure 57. Algal biomass conversion process for biofuel production.
Figure 58. Classification and process technology according to carbon emission in ammonia production.
Figure 59. Green ammonia production and use.
Figure 60. Schematic of the Haber Bosch ammonia synthesis reaction.
Figure 61. Schematic of hydrogen production via steam methane reformation.
Figure 62. SWOT analysis for green ammonia.
Figure 63. Estimated production cost of green ammonia.
Figure 64. Projected annual ammonia production, million tons to 2050.
Figure 65. CO2 capture and separation technology.
Figure 66. Conversion route for CO2-derived fuels and chemical intermediates.
Figure 67.  Conversion pathways for CO2-derived methane, methanol and diesel.
Figure 68. SWOT analysis for biofuels from carbon capture.
Figure 69. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.
Figure 70. Global CO2 capture from biomass and DAC in the Net Zero Scenario.
Figure 71.  DAC technologies.
Figure 72. Schematic of Climeworks DAC system.
Figure 73. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.
Figure 74.  Flow diagram for solid sorbent DAC.
Figure 75. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.
Figure 76. Global capacity of direct air capture facilities.
Figure 77. Global map of DAC and CCS plants.
Figure 78. Schematic of costs of DAC technologies.
Figure 79. DAC cost breakdown and comparison.
Figure 80. Operating costs of generic liquid and solid-based DAC systems.
Figure 81. Conversion route for CO2-derived fuels and chemical intermediates.
Figure 82.  Conversion pathways for CO2-derived methane, methanol and diesel.
Figure 83. CO2 feedstock for the production of e-methanol.
Figure 84. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.
Figure 85. SWOT analysis: CO2 utilization in fuels.
Figure 86. Audi synthetic fuels.
Figure 87. Bio-oil upgrading/fractionation techniques.
Figure 88. SWOT analysis for bio-oils.
Figure 89. ANDRITZ Lignin Recovery process.
Figure 90. ChemCyclingTM prototypes.
Figure 91. ChemCycling circle by BASF.
Figure 92. FBPO process
Figure 93. Direct Air Capture Process.
Figure 94. CRI process.
Figure 95. Cassandra Oil  process.
Figure 96. Colyser process.
Figure 97. ECFORM electrolysis reactor schematic.
Figure 98. Dioxycle modular electrolyzer.
Figure 99. Domsjö process.
Figure 100. FuelPositive system.
Figure 101. INERATEC unit.
Figure 102. Infinitree swing method.
Figure 103. Audi/Krajete unit.
Figure 104. Enfinity cellulosic ethanol technology process.
Figure 105: Plantrose process.
Figure 106. Sunfire process for Blue Crude production.
Figure 107. Takavator.
Figure 108. O12 Reactor.
Figure 109. Sunglasses with lenses made from CO2-derived materials.
Figure 110. CO2 made car part.
Figure 111. The Velocys process.
Figure 112. Goldilocks process and applications.
Figure 113. The Proesa® Process.

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • Aduro Clean Technologies
  • Aemetis
  • Agilyx
  • Air Company
  • Agra Energy
  • Aircela
  • Algenol
  • Alpha Biofuels
  • AM Green
  • Andritz AG
  • APChemi
  • Apeiron Bioenergy
  • Aperam BioEnergia
  • Applied Research Associates
  • Arcadia eFuels
  • ASB Biodiesel
  • Atmonia
  • Avalon BioEnergy
  • Avantium
  • Avioxx
  • BASF
  • BBCA Biochemical & GALACTIC Lactic Acid
  • BDI-BioEnergy International
  • BEE Biofuel
  • Bio-Oils
  • Biofy
  • Biofine Technology
  • BiogasClean
  • Biojet
  • Bloom Biorenewables
  • BlueAlp Technology
  • Blue BioFuels
  • Braven Environmental
  • Brightmark Energy
  • bse Methanol
  • BTG Bioliquids
  • Byogy Renewables
  • C1 Green Chemicals
  • Caphenia
  • CarbonBridge
  • Carbon Collect
  • Carbon Engineering
  • Carbon Infinity
  • Carbon Recycling International
  • Carbon Sink
  • Carbyon
  • Cargill
  • Cassandra Oil
  • Casterra Ag
  • Celtic Renewables
  • Cereal Process Technologies
  • CERT Systems
  • CF Industries Holdings
  • Chitose Bio Evolution
  • Circla Nordic
  • CleanJoule
  • Climeworks
  • CNF Biofuel
  • Concord Blue Engineering
  • Cool Planet Energy Systems
  • Corsair Group International
  • Coval Energy
  • Crimson Renewable Energy
  • C-Zero
  • D-CRBN
  • Diamond Green Diesel
  • Dimensional Energy
  • Royal DSM
  • Dioxide Materials
  • Dioxycle
  • Domsjö Fabriker
  • DuPont
  • EcoCeres
  • Eco Environmental
  • Eco Fuel Technology
  • Electro-Active Technologies
  • Emerging Fuels Technology
  • Encina Development Group
  • Enerkem
  • Eneus Energy
  • Enexor BioEnergy
  • Eni Sustainable Mobility
  • Ensyn Corporation
  • Euglena
  • EnviTec Biogas
  • Firefly Green Fuels
  • Forge Hydrocarbons Corporation
  • FuelPositive
  • Fuenix Ecogy
  • Fulcrum BioEnergy
  • Galp Energia
  • GenCell Energy
  • Genecis Bioindustries
  • Gevo
  • GIDARA Energy
  • Graforce Hydro
  • Granbio Technologies
  • Greenergy
  • Green COP
  • Green Earth Institute
  • Green Fuel
  • Hago Energetics
  • Haldor Topsoe
  • Handerek Technologies
  • Hero BX
  • Honeywell
  • HutanBio
  • Hyundai Oilbank
  • Oy Hydrocell
  • Hy2Gen
  • Hydrogenious LOHC
  • HYCO1
  • HydGene Renewables
  • Ineratec
  • Infinitree
  • Infinium Electrofuels
  • Innoltek
  • Jet Zero Australia
  • Jilin COFCO Biomaterial Corporation
  • Jupiter Ionics
  • Kaidi
  • Kanteleen Voima
  • KEW Technology
  • Khepra
  • Klean Industries
  • Krajete
  • Kvasir Technologies
  • LanzaJet
  • Lanzatech
  • Lectrolyst
  • Licella
  • Liquid Wind
  • Lootah Biofuels
  • Lummus Technology
  • LXP Group
  • Mash Energy
  • Mercurius Biorefining
  • MOFWORX
  • Mote
  • Neogen
  • NeoZeo
  • Neste
  • New Hope Energy
  • NewEnergyBlue
  • NextChem
  • Nexus Fuels
  • Nordic ElectroFuel
  • Nordsol
  • Norsk e-Fuel
  • Nova Pangaea Technologies
  • Novozymes
  • Obeo Biogas
  • Oberon Fuels
  • Obrist Group
  • Oceania Biofuels
  • O.C.O.
  • OMV
  • Opus 12
  • ORLEN Południe
  • OXCCU
  • OxEon Energy
  • Phillips 66
  • Phoenix BioPower
  • Photanol
  • Phycobloom
  • Phytonix Corporation
  • Plastic2Oil
  • Plastogaz
  • Polycycl
  • Praj Industries
  • Preem
  • Prometheus Fuels
  • Proton Power
  • Provectus Algae
  • ProPika
  • Pure Lignin Environmental Technology
  • Pyrochar