+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Rocket Propulsion Market By Orbit, By End Use, By Application, By Propulsion: Global Opportunity Analysis and Industry Forecast, 2021-2031

  • PDF Icon

    Report

  • 238 Pages
  • November 2022
  • Region: Global
  • Allied Market Research
  • ID: 5725140
Rocket propulsion is a method used to send a projectile and out space while breaking earth’s gravity. The propulsion system used in rockets generate an enormous forwards push thus lifting the rocket from ground and propelling it towards space. A rocket can be aircraft, spacecraft, missile, or a vehicle which generates thrust. Thrust is generated by propulsion system of the rocket. Rocket engines use three states of propellants: solid, liquid, and hybrid (combination of solid and liquid propellants). Solid rocket engines use solid fuels, generates high thrust, and are more reliable than other propulsion systems. However, solid rocket engines do not have the capability of restart. While liquid rocket engine uses liquid fuel, generates lots of thrust, and are more controllable than solid propellant rockets. However, liquid rocket engines have complex design and thereby having high costs. Hybrid propulsion system in rockets uses both solid & liquid fuel in two different phases. Hybrid rocket engines possess capabilities of both solid & liquid propulsion systems. The rocket propulsion system dates backs thousands of years, but the accelerated growth and technological innovations in modern rocketry began in past decade. These systems are used for several operations such as launching vehicles to space, placing artificial satellite in orbit, human space flight and space exploration.

For the purpose of analysis, the global rocket propulsion market is segmented into orbit, end-use, application, propulsion, and region. By orbit, the market is classified into LEO & Elliptical, GEO, MEO. Depending on end use, it is segregated into commercial, military, and civil and government. On the basis of application, it is fragmented into communication, earth observation, navigation, global positioning system (GPS) and surveillance, technology development and education, and others. Depending on end use, it is segregated into solid, liquid, and hybrid. Region wise, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA.

Growth drivers, restraints, and opportunities are explained in the study to better understand the market dynamics. This study further highlights key areas of investment. In addition, it includes Porter’s five forces analysis to understand the competitive scenario of the industry and the role of each stakeholder. The study features strategies adopted by key market players to maintain their foothold in the market.

Companies have adopted product development, collaboration, and long-term agreements as their key development strategies. The key players profiled in this report include Airbus, Blue Origin, Boeing, Mitsubishi Heavy Industries, Moog Inc., Northrop Grumman, Rocket Lab USA, SAFRAN S. A., SpaceX, and Virgin Galactic.

KEY BENEFITS FOR STAKEHOLDERS

  • This study presents analytical depiction of the global rocket propulsion market analysis along with current trends and future estimations to depict imminent investment pockets.
  • The overall rocket propulsion market opportunity is determined by understanding profitable trends to gain a stronger foothold.
  • The report presents information related to the key drivers, restraints, and opportunities of the global rocket propulsion market with a detailed impact analysis.
  • The current rocket propulsion market is quantitatively analyzed from 2022 to 2031 to benchmark the financial competency.
  • Porter’s five forces analysis illustrates the potency of the buyers and suppliers in the industry.

Key Market Segments

By Orbit

  • LEO and Elliptical
  • GEO
  • MEO

By End Use

  • Civil and Government
  • Commercial
  • Military

By Application

  • Communication
  • Earth Observation
  • Navigation, Global Positioning System (GPS) and Surveillance
  • Technology Development and Education
  • Others

By Propulsion

  • Solid
  • Liquid
  • Hybrid

By Region

  • North America
  • U. S.
  • Canada
  • Mexico
  • Europe
  • Germany
  • France
  • Italy
  • Spain
  • Russia
  • UK
  • Rest of Europe
  • Asia-Pacific
  • China
  • India
  • Japan
  • South Korea
  • Rest of Asia-Pacific
  • LAMEA
  • Latin America
  • Middle East
  • Africa

Key Market Players

  • Airbus
  • Rocket Lab USA
  • Boeing Company
  • Spacex
  • Virgin Galactic
  • Northrop Grumman
  • Moog Inc.
  • Safran S. A.
  • Mitsubishi Heavy Industries
  • Blue Origin

Table of Contents

CHAPTER 1: INTRODUCTION
1.1. Report description
1.2. Key market segments
1.3. Key benefits to the stakeholders
1.4. Research Methodology
1.4.1. Secondary research
1.4.2. Primary research
1.4.3. Analyst tools and models

CHAPTER 2: EXECUTIVE SUMMARY
2.1. Key findings of the study
2.2. CXO Perspective

CHAPTER 3: MARKET OVERVIEW
3.1. Market definition and scope
3.2. Key findings
3.2.1. Top investment pockets
3.3. Porter’s five forces analysis
3.4. Top player positioning
3.5. Market dynamics
3.5.1. Drivers
3.5.2. Restraints
3.5.3. Opportunities
3.6. COVID-19 Impact Analysis on the market

CHAPTER 4: ROCKET PROPULSION MARKET, BY ORBIT
4.1 Overview
4.1.1 Market size and forecast
4.2 LEO and Elliptical
4.2.1 Key market trends, growth factors and opportunities
4.2.2 Market size and forecast, by region
4.2.3 Market share analysis by country
4.3 GEO
4.3.1 Key market trends, growth factors and opportunities
4.3.2 Market size and forecast, by region
4.3.3 Market share analysis by country
4.4 MEO
4.4.1 Key market trends, growth factors and opportunities
4.4.2 Market size and forecast, by region
4.4.3 Market share analysis by country

CHAPTER 5: ROCKET PROPULSION MARKET, BY END USE
5.1 Overview
5.1.1 Market size and forecast
5.2 Civil and Government
5.2.1 Key market trends, growth factors and opportunities
5.2.2 Market size and forecast, by region
5.2.3 Market share analysis by country
5.3 Commercial
5.3.1 Key market trends, growth factors and opportunities
5.3.2 Market size and forecast, by region
5.3.3 Market share analysis by country
5.4 Military
5.4.1 Key market trends, growth factors and opportunities
5.4.2 Market size and forecast, by region
5.4.3 Market share analysis by country

CHAPTER 6: ROCKET PROPULSION MARKET, BY APPLICATION
6.1 Overview
6.1.1 Market size and forecast
6.2 Communication
6.2.1 Key market trends, growth factors and opportunities
6.2.2 Market size and forecast, by region
6.2.3 Market share analysis by country
6.3 Earth Observation
6.3.1 Key market trends, growth factors and opportunities
6.3.2 Market size and forecast, by region
6.3.3 Market share analysis by country
6.4 Navigation, Global Positioning System (GPS) and Surveillance
6.4.1 Key market trends, growth factors and opportunities
6.4.2 Market size and forecast, by region
6.4.3 Market share analysis by country
6.5 Technology Development and Education
6.5.1 Key market trends, growth factors and opportunities
6.5.2 Market size and forecast, by region
6.5.3 Market share analysis by country
6.6 Others
6.6.1 Key market trends, growth factors and opportunities
6.6.2 Market size and forecast, by region
6.6.3 Market share analysis by country

CHAPTER 7: ROCKET PROPULSION MARKET, BY PROPULSION
7.1 Overview
7.1.1 Market size and forecast
7.2 Solid
7.2.1 Key market trends, growth factors and opportunities
7.2.2 Market size and forecast, by region
7.2.3 Market share analysis by country
7.3 Liquid
7.3.1 Key market trends, growth factors and opportunities
7.3.2 Market size and forecast, by region
7.3.3 Market share analysis by country
7.4 Hybrid
7.4.1 Key market trends, growth factors and opportunities
7.4.2 Market size and forecast, by region
7.4.3 Market share analysis by country

CHAPTER 8: ROCKET PROPULSION MARKET, BY REGION
8.1 Overview
8.1.1 Market size and forecast
8.2 North America
8.2.1 Key trends and opportunities
8.2.2 North America Market size and forecast, by Orbit
8.2.3 North America Market size and forecast, by End Use
8.2.4 North America Market size and forecast, by Application
8.2.5 North America Market size and forecast, by Propulsion
8.2.6 North America Market size and forecast, by country
8.2.6.1 U. S.
8.2.6.1.1 Key market trends, growth factors and opportunities
8.2.6.1.2 Market size and forecast, by Orbit
8.2.6.1.3 Market size and forecast, by End Use
8.2.6.1.4 Market size and forecast, by Application
8.2.6.1.5 Market size and forecast, by Propulsion
8.2.6.2 Canada
8.2.6.2.1 Key market trends, growth factors and opportunities
8.2.6.2.2 Market size and forecast, by Orbit
8.2.6.2.3 Market size and forecast, by End Use
8.2.6.2.4 Market size and forecast, by Application
8.2.6.2.5 Market size and forecast, by Propulsion
8.2.6.3 Mexico
8.2.6.3.1 Key market trends, growth factors and opportunities
8.2.6.3.2 Market size and forecast, by Orbit
8.2.6.3.3 Market size and forecast, by End Use
8.2.6.3.4 Market size and forecast, by Application
8.2.6.3.5 Market size and forecast, by Propulsion
8.3 Europe
8.3.1 Key trends and opportunities
8.3.2 Europe Market size and forecast, by Orbit
8.3.3 Europe Market size and forecast, by End Use
8.3.4 Europe Market size and forecast, by Application
8.3.5 Europe Market size and forecast, by Propulsion
8.3.6 Europe Market size and forecast, by country
8.3.6.1 Germany
8.3.6.1.1 Key market trends, growth factors and opportunities
8.3.6.1.2 Market size and forecast, by Orbit
8.3.6.1.3 Market size and forecast, by End Use
8.3.6.1.4 Market size and forecast, by Application
8.3.6.1.5 Market size and forecast, by Propulsion
8.3.6.2 France
8.3.6.2.1 Key market trends, growth factors and opportunities
8.3.6.2.2 Market size and forecast, by Orbit
8.3.6.2.3 Market size and forecast, by End Use
8.3.6.2.4 Market size and forecast, by Application
8.3.6.2.5 Market size and forecast, by Propulsion
8.3.6.3 Italy
8.3.6.3.1 Key market trends, growth factors and opportunities
8.3.6.3.2 Market size and forecast, by Orbit
8.3.6.3.3 Market size and forecast, by End Use
8.3.6.3.4 Market size and forecast, by Application
8.3.6.3.5 Market size and forecast, by Propulsion
8.3.6.4 Spain
8.3.6.4.1 Key market trends, growth factors and opportunities
8.3.6.4.2 Market size and forecast, by Orbit
8.3.6.4.3 Market size and forecast, by End Use
8.3.6.4.4 Market size and forecast, by Application
8.3.6.4.5 Market size and forecast, by Propulsion
8.3.6.5 Russia
8.3.6.5.1 Key market trends, growth factors and opportunities
8.3.6.5.2 Market size and forecast, by Orbit
8.3.6.5.3 Market size and forecast, by End Use
8.3.6.5.4 Market size and forecast, by Application
8.3.6.5.5 Market size and forecast, by Propulsion
8.3.6.6 UK
8.3.6.6.1 Key market trends, growth factors and opportunities
8.3.6.6.2 Market size and forecast, by Orbit
8.3.6.6.3 Market size and forecast, by End Use
8.3.6.6.4 Market size and forecast, by Application
8.3.6.6.5 Market size and forecast, by Propulsion
8.3.6.7 Rest of Europe
8.3.6.7.1 Key market trends, growth factors and opportunities
8.3.6.7.2 Market size and forecast, by Orbit
8.3.6.7.3 Market size and forecast, by End Use
8.3.6.7.4 Market size and forecast, by Application
8.3.6.7.5 Market size and forecast, by Propulsion
8.4 Asia-Pacific
8.4.1 Key trends and opportunities
8.4.2 Asia-Pacific Market size and forecast, by Orbit
8.4.3 Asia-Pacific Market size and forecast, by End Use
8.4.4 Asia-Pacific Market size and forecast, by Application
8.4.5 Asia-Pacific Market size and forecast, by Propulsion
8.4.6 Asia-Pacific Market size and forecast, by country
8.4.6.1 China
8.4.6.1.1 Key market trends, growth factors and opportunities
8.4.6.1.2 Market size and forecast, by Orbit
8.4.6.1.3 Market size and forecast, by End Use
8.4.6.1.4 Market size and forecast, by Application
8.4.6.1.5 Market size and forecast, by Propulsion
8.4.6.2 India
8.4.6.2.1 Key market trends, growth factors and opportunities
8.4.6.2.2 Market size and forecast, by Orbit
8.4.6.2.3 Market size and forecast, by End Use
8.4.6.2.4 Market size and forecast, by Application
8.4.6.2.5 Market size and forecast, by Propulsion
8.4.6.3 Japan
8.4.6.3.1 Key market trends, growth factors and opportunities
8.4.6.3.2 Market size and forecast, by Orbit
8.4.6.3.3 Market size and forecast, by End Use
8.4.6.3.4 Market size and forecast, by Application
8.4.6.3.5 Market size and forecast, by Propulsion
8.4.6.4 South Korea
8.4.6.4.1 Key market trends, growth factors and opportunities
8.4.6.4.2 Market size and forecast, by Orbit
8.4.6.4.3 Market size and forecast, by End Use
8.4.6.4.4 Market size and forecast, by Application
8.4.6.4.5 Market size and forecast, by Propulsion
8.4.6.5 Rest of Asia-Pacific
8.4.6.5.1 Key market trends, growth factors and opportunities
8.4.6.5.2 Market size and forecast, by Orbit
8.4.6.5.3 Market size and forecast, by End Use
8.4.6.5.4 Market size and forecast, by Application
8.4.6.5.5 Market size and forecast, by Propulsion
8.5 LAMEA
8.5.1 Key trends and opportunities
8.5.2 LAMEA Market size and forecast, by Orbit
8.5.3 LAMEA Market size and forecast, by End Use
8.5.4 LAMEA Market size and forecast, by Application
8.5.5 LAMEA Market size and forecast, by Propulsion
8.5.6 LAMEA Market size and forecast, by country
8.5.6.1 Latin America
8.5.6.1.1 Key market trends, growth factors and opportunities
8.5.6.1.2 Market size and forecast, by Orbit
8.5.6.1.3 Market size and forecast, by End Use
8.5.6.1.4 Market size and forecast, by Application
8.5.6.1.5 Market size and forecast, by Propulsion
8.5.6.2 Middle East
8.5.6.2.1 Key market trends, growth factors and opportunities
8.5.6.2.2 Market size and forecast, by Orbit
8.5.6.2.3 Market size and forecast, by End Use
8.5.6.2.4 Market size and forecast, by Application
8.5.6.2.5 Market size and forecast, by Propulsion
8.5.6.3 Africa
8.5.6.3.1 Key market trends, growth factors and opportunities
8.5.6.3.2 Market size and forecast, by Orbit
8.5.6.3.3 Market size and forecast, by End Use
8.5.6.3.4 Market size and forecast, by Application
8.5.6.3.5 Market size and forecast, by Propulsion

CHAPTER 9: COMPANY LANDSCAPE
9.1. Introduction
9.2. Top winning strategies
9.3. Product Mapping of Top 10 Player
9.4. Competitive Dashboard
9.5. Competitive Heatmap
9.6. Key developments

CHAPTER 10: COMPANY PROFILES
10.1 Airbus
10.1.1 Company overview
10.1.2 Company snapshot
10.1.3 Operating business segments
10.1.4 Product portfolio
10.1.5 Business performance
10.1.6 Key strategic moves and developments
10.2 Rocket Lab USA
10.2.1 Company overview
10.2.2 Company snapshot
10.2.3 Operating business segments
10.2.4 Product portfolio
10.2.5 Business performance
10.2.6 Key strategic moves and developments
10.3 Boeing Company
10.3.1 Company overview
10.3.2 Company snapshot
10.3.3 Operating business segments
10.3.4 Product portfolio
10.3.5 Business performance
10.3.6 Key strategic moves and developments
10.4 Mitsubishi Heavy Industries
10.4.1 Company overview
10.4.2 Company snapshot
10.4.3 Operating business segments
10.4.4 Product portfolio
10.4.5 Business performance
10.4.6 Key strategic moves and developments
10.5 Spacex
10.5.1 Company overview
10.5.2 Company snapshot
10.5.3 Operating business segments
10.5.4 Product portfolio
10.5.5 Business performance
10.5.6 Key strategic moves and developments
10.6 Blue Origin
10.6.1 Company overview
10.6.2 Company snapshot
10.6.3 Operating business segments
10.6.4 Product portfolio
10.6.5 Business performance
10.6.6 Key strategic moves and developments
10.7 Virgin Gallactic
10.7.1 Company overview
10.7.2 Company snapshot
10.7.3 Operating business segments
10.7.4 Product portfolio
10.7.5 Business performance
10.7.6 Key strategic moves and developments
10.8 Northrop Grumman
10.8.1 Company overview
10.8.2 Company snapshot
10.8.3 Operating business segments
10.8.4 Product portfolio
10.8.5 Business performance
10.8.6 Key strategic moves and developments
10.9 Moog Inc.
10.9.1 Company overview
10.9.2 Company snapshot
10.9.3 Operating business segments
10.9.4 Product portfolio
10.9.5 Business performance
10.9.6 Key strategic moves and developments
10.10 Safran S. A.
10.10.1 Company overview
10.10.2 Company snapshot
10.10.3 Operating business segments
10.10.4 Product portfolio
10.10.5 Business performance
10.10.6 Key strategic moves and developments

Executive Summary

The rocket propulsion market is expected to experience a significant growth rate of 5.3% from 2022-2031, owing to increase in space launch activities and rise in investments in space sector- according to the analyst

Rocket propulsion is a method used to send a projectile and out space while breaking earth’s gravity. The propulsion system used in rockets generate an enormous push; thus, lifting the rocket from ground and propelling it in space. A rocket can be aircraft, spacecraft, missile, or a vehicle which generates thrust. Thrust is generated by propulsion system of the rocket. Rocket engines use three states of propellants: solid, liquid, and hybrid (combination of solid and liquid propellants). Solid rocket engines use solid fuels, generate high thrust, and are more reliable than other propulsion systems. However, solid rocket engines do not have the capability of restart. While liquid rocket engine uses liquid fuel, generates lots of thrust, and are more controllable than solid propellant rockets. However, liquid rocket engines have complex design and thereby having high costs. Hybrid propulsion system in rockets uses both solid & liquid fuel in two different phases. Hybrid rocket engines possess capabilities of both solid & liquid propulsion systems. The rocket propulsion system dates backs thousands of years, but the accelerated growth and technological innovations in modern rocketry began in past decade. These systems are used for several operations such as launching vehicles to space, placing artificial satellite in orbit, human space flight and space exploration.

The key factors driving the growth of the rocket propulsion market include increase in space exploration mission and increase in requirement of global connectivity communication-based satellite constellations, which creates lucrative opportunities for the growth of the market across the globe. Moreover, the factors such as technological advancement of peripheral components, increase in defense budget allocation, usage of life extension vehicle, increase in satellite launch activities and adoption of SWaP in manufacturing operations also propels the market toward a positive growth across the globe.

The rising implementation of CubeSats, which are modular and small satellites with easier to launch and reduced costs has boosted the constellations popularity. SpaceX is a known as major player for its Starlink constellation, which is established to provide internet access to remote places. The company launched 1,500 satellites and more are scheduled to be launched. The use of satellites for national security, remote sensing, earth observation, government communications, R&D, telecommunication, space observation, and surveillance has fueled the growth of the satellite industry.

The rocket propulsion market is segmented into orbit, end use, application, propulsion, and region. By orbit, the market is divided into LEO and Elliptical, GEO, and MEO. By End Use, it is segmented into civil and government, commercial, and military. By application, it is categorized into communication, earth observation, navigation, global positioning system (GPS) and surveillance, technology development and education, and others. By propulsion, it is classified into solid, liquid, and hybrid. By region, it is analyzed across North America (U.S., Canada and Mexico), Europe (Germany, France, Italy, Spain, Russia, UK, Rest of Europe), Asia-Pacific (China, India, Japan, South Korea, Rest of Asia-Pacific), and LAMEA (Latin America, Middle East and Africa).

The key players profiled in the study include Airbus, Blue Origin, Boeing, Mitsubishi Heavy Industries, Moog Inc., Northrop Grumman, Rocket Lab USA, SAFRAN S.A., SpaceX, and Virgin Galactic. The players in the market have been actively engaged in the adoption of various strategies such as acquisition, product launch, and expansion to remain competitive and gain advantage over the competitors in the market. For instance, in August 2022, Northrop Grumman Corporation and Firefly Aerospace joined forces to offer an American-built first-stage upgrade for the Antares rocket and a new medium launch vehicle to serve commercial, civil, and national security space launch markets.

Key Market Insights

By orbit, the LEO and elliptical segment was the highest revenue contributor to the market, and is estimated to reach $6.68 billion by 2031, with a CAGR of 5.6%. However, the MEO segment is estimated to hold a CAGR of 4.3% during the forecast period.

By end use, the civil and government segment dominated the global market, and is estimated to reach $1.62 billion by 2031, with a CAGR of 5.4%. However, the military segment is expected to be the fastest growing segment with the CAGR of 4.5% during the forecast period.

By application, the communication segment was the highest revenue contributor to the market, with $2.38 billion in 2021, and is estimated to reach $4.13 billion by 2031, with a CAGR of 5.9%.

By propulsion, the liquid segment was the highest revenue contributor to the market, with $2.22 billion in 2021, and is estimated to reach $3.57 billion, with a CAGR of 5.1% from 2022 to 2031.

By region, North America was the highest revenue contributor, accounting for $2.33 billion in 2021, and is estimated to reach $3.89 billion by 2031, with a CAGR of 5.5%.

Companies Mentioned

  • Airbus
  • Rocket Lab Usa
  • Boeing Company
  • Spacex
  • Virgin Galactic
  • Northrop Grumman
  • Moog Inc.
  • Safran SA
  • Mitsubishi Heavy Industries
  • Blue Origin

Methodology

The analyst offers exhaustive research and analysis based on a wide variety of factual inputs, which largely include interviews with industry participants, reliable statistics, and regional intelligence. The in-house industry experts play an instrumental role in designing analytic tools and models, tailored to the requirements of a particular industry segment. The primary research efforts include reaching out participants through mail, tele-conversations, referrals, professional networks, and face-to-face interactions.

They are also in professional corporate relations with various companies that allow them greater flexibility for reaching out to industry participants and commentators for interviews and discussions.

They also refer to a broad array of industry sources for their secondary research, which typically include; however, not limited to:

  • Company SEC filings, annual reports, company websites, broker & financial reports, and investor presentations for competitive scenario and shape of the industry
  • Scientific and technical writings for product information and related preemptions
  • Regional government and statistical databases for macro analysis
  • Authentic news articles and other related releases for market evaluation
  • Internal and external proprietary databases, key market indicators, and relevant press releases for market estimates and forecast

Furthermore, the accuracy of the data will be analyzed and validated by conducting additional primaries with various industry experts and KOLs. They also provide robust post-sales support to clients.

Loading
LOADING...