+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Enzyme Engineering. Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science. Edition No. 1

  • Book

  • 400 Pages
  • February 2023
  • John Wiley and Sons Ltd
  • ID: 5838525
Enzyme Engineering

An authoritative and up-to-date discussion of enzyme engineering and its applications

In Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science, a team of distinguished researchers deliver a robust treatment of enzyme engineering and its applications in various fields such as biotechnology, life science, and synthesis. The book begins with an introduction to different protein engineering techniques, covers topics like gene mutagenesis methods for directed evolution and rational enzyme design. It includes industrial case studies of enzyme engineering with a focus on selectivity and activity.

The authors also discuss new and innovative areas in the field, involving machine learning and artificial intelligence. It offers several insightful perspectives on the future of this work.

Readers will also find: - A thorough introduction to directed evolution and rational design as protein engineering techniques - Comprehensive explorations of screening and selection techniques, gene mutagenesis methods in directed evolution, and guidelines for applying gene mutagenesis in organic chemistry, pharmaceutical applications, and biotechnology - Practical discussions of protein engineering of enzyme robustness relevant to organic and pharmaceutical chemistry- Treatments of artificial enzymes as promiscuous catalysts - Various lessons learned from semi-rational and rational directed evolution

A transdisciplinary treatise, Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science is perfect for protein engineers, theoreticians, organic, and pharmaceutical chemists as well as transition metal researchers in catalysis and biotechnologists.

Table of Contents

Introduction to Directed Evolution and Rational Design as Protein Engineering Techniques
-Methods and Aims of Directed Enzyme Evolution
-Short History of Directed Enzyme Evolution
-Methods and Aims of Rational Design of Enzymes
Screening and Selection Techniques
Gene Mutagenesis Methods
Guidelines for Applying Gene Mutagenesis Methods in Organic Chemistry, Pharmaceutical Applications and Biotechnology
Case Studies of Protein Engineering of Activity and Selectivity
-Epoxide Hydrolase
-Transaminase as an Industrial Example with Pharmaceutical Application
-Geranylgeranyl Diphosphate Synthase for Efficient Carotenoid Production
-Cytochrome P450 Monooxygenases for Synthesis of Hydroxylation of Steroids Needed in the Preparation of Pharmaceuticals
-Lipase for Stereocomplementary Production of Organic Compounds with Two Chirality Centers
-Further Examples Using Other Enzyme Types
Protein Engineering of Enzyme Robustness
-Examples of Relevance to Organic and Pharmaceutical Applications
-Examples of Relevance to Biotechnology
Artificial Metallo-Enzymes for Promiscuous Transformations Using Known Organic Reaction Types as a Guide
Learning Lessons from Protein Engineering
Perspectives for Future Work
-In Extending Applications in Organic and Pharmaceutical Chemistry
-In Extending Biotechnological Contributions to Ecology

Authors

Manfred T. Reetz Max-Planck-Institut fur Kohlenforschung, Mulheim a.d. Ruh. Zhoutong Sun Ge Qu