+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Semiconductor Solar Photocatalysts. Fundamentals and Applications. Edition No. 1

  • Book

  • 512 Pages
  • November 2021
  • John Wiley and Sons Ltd
  • ID: 5839209

Provides a timely overview of basic principles and significant advances of semiconductor-based photocatalysts for solar energy conversion 

Semiconductor Solar Photocatalysts: Fundamentals and Applications presents a systematic, in-depth summary of both fundamental and cutting-edge research in novel photocatalytic systems. Focusing on photocatalysts with vast potential for efficient utilization of solar energy, this up-to-date volume covers heterojunction systems, graphene-based photocatalysts, organic semiconductor photocatalysts, metal sulfide semiconductor photocatalysts, and graphitic carbon nitride-based photocatalysts. 

Organized into six chapters, the text opens with a detailed introduction to the history, design principles, modification strategies, and performance evaluation methods of solar energy photocatalysis. The remaining chapters provide detailed discussion of various novel photocatalytic systems such as direct Z-scheme and S-scheme photocatalysts, organic polymers, and covalent organic frameworks. This authoritative resource: 

  • Explains the essential concepts of solar energy photocatalysis and heterojunction systems for photocatalysis 
  • Reviews interesting structures and new applications of semiconductor photocatalysts 
  • Features contributions from an international panel of leading researchers in the field 
  • Includes extensive references and numerous tables, figures, and color illustrations  

Semiconductor Solar Photocatalysts: Fundamentals and Applications is valuable resource for all catalytic chemists, materials scientists, inorganic and physical chemists, chemical engineers, and physicists working in the semiconductor industry. 

Table of Contents

Chapter 1: The fundamentals of solar energy photocatalysis
1.1 Background
1.2 History of solar energy photocatalysis
1.3 Fundamental principles of solar energy photocatalysis
1.3.1 Basic mechanisms for solar energy photocatalysis
1.3.2 Thermodynamic requirements for solar energy photocatalysis
1.3.3 Dynamics requirements for solar energy photocatalysis
1.4 Design, development and modification of semiconductor photocatalysts
1.4.1 Design principles of semiconductor photocatalysts
1.4.2 Classification of semiconductor photocatalysts
1.4.3 Modification strategies of semiconductor photocatalysts
1.4.4 Development approaches of novel semiconductor photocatalysts
1.5 Processes and evaluation of solar energy photocatalysis
1.5.1 Processes of solar energy photocatalysis
1.5.1.1 photocatalytic water splitting
1.5.1.2 photocatalytic CO2 reduction
1.5.1.3 photocatalytic degradation
1.5.2 Evaluation of solar energy photocatalysis
1.6 The scope of this book

Chapter 2: Heterojunction systems for photocatalysis
2.1. Introduction
2.2. Classification of heterojunction photocatalysts
2.2.1. Type-II heterojunction photocatalysts
2.2.2. p-n junction photocatalysts
2.2.3. Surface junction photocatalysts
2.2.4. Direct Z-scheme photocatalysts
2.2.5. S-scheme photocatalysts
2.3. Evaluation of the heterojunction photocatalysts
2.3.1. Band structure
2.3.1.1. Light absorption ability
2.3.1.2. Reduction and oxidation ability
2.3.1.3. Identification of major charge carriers
2.3.2. Charge carrier separation efficiency
2.3.2.1. Electrochemical test
2.3.2.2. Optical spectroscopy
2.3.3. Charge carrier migration mechanism
2.3.3.1. Metal loading
2.3.3.2. Reactive oxygen species trapping
2.3.3.3. In situ irradiated XPS
2.4. Applications
2.4.1. Photocatalytic water splitting
2.4.2. Photocatalytic CO2 reduction
2.4.3. Photocatalytic N2 fixation
2.4.4. Photocatalytic environmental remediation
2.4.5. Photocatalytic disinfection
2.5. Summary and Future Perspective

Chapter 3: Metal sulfide semiconductor photocatalysts
3.1. Introduction
3.2. General view of metal sulfide photocatalysts
3.3. Synthetic strategies of metal sulfide photocatalysts
3.3.1. Solution-based method
3.3.1.1. Hydrothermal method
3.3.1.2. Solvothermal method
3.3.2. Chemical bath deposition
3.3.3. Template method
3.3.4. Ion exchange method
3.3.5. Other synthetic methods
3.4. CdS-based photocatalysts
3.4.1. Crystal structures and morphology
3.4.1.1. Zero-dimensional structure
3.4.1.2. One-dimensional structure
3.4.1.3. Two-dimensional structure
3.4.1.4. Three-dimensional structure
3.4.2. Construction of CdS based composite photocatalysts
3.4.2.1. CdS cocatalyst heterojunctions
3.4.2.2. CdS-based type II heterojunctions
3.4.2.3. CdS-based Z-scheme heterojunctions
3.4.2.4. CdS-based S-scheme heterojunctions
3.5. In2S3-based photocatalysts
3.5.1. Crystal structure and electronic properties
3.5.2. Morphology of In2S3 photocatalyst
3.5.2.1. Zero-dimensional structure
3.5.2.2. One-dimensional structure
3.5.2.3. Two-dimensional structure
3.5.2.4. Three-dimensional structure
3.5.3. Construction of In2S3-based composite photocatalysts
3.5.3.1. In2S3-based type-II heterojunctions
3.5.3.2. In2S3-based direct Z-scheme heterojunctions
3.5.3.3. In2S3-based indirect Z-scheme heterojunctions
3.6. SnS2-based photocatalysts
3.6.1. Morphology of SnS2 photocatalysts
3.6.2. Construction of SnS2 based composite photocatalyst
3.6.2.1. Cocatalyst/SnS2 composites
3.6.2.2. SnS2 based type-II composites
3.6.2.3. SnS2 based Z-scheme composites
3.7. Cu2S-based photocatalysts
3.7.1. Morphology of Cu2S photocatalysts
3.7.1.1. Zero-dimensional structure
3.7.1.2. One-dimensional structure
3.7.1.3. Two-dimensional structure
3.7.1.4. Three-dimensional structure
3.7.2. Construction of Cu2S-based composite photocatalysts
3.7.2.1. Cu2S/metal oxide photocatalysts
3.7.2.2. Cu2S/metal sulfide photocatalysts
3.7.2.3. Cu2S/metal photocatalysts
3.8. Other metal sulfide photocatalysts
3.9. Environmental and energy applications
3.9.1. Photocatalytic H2 production
3.9.1.1. Unary metal sulfide photocatalysts
3.9.1.2. Binary metal sulfide-based nanocomposite photocatalysts
3.9.1.3. Ternary metal sulfide-based nanocomposite photocatalysts
3.9.2. Photoreduction of CO2
3.9.3. Photocatalytic removal of environmental contamination
3.9.3.1. Photocatalytic dye degradation
3.9.3.2. Photocatalytic reduction of hexavalent chromium
3.10. Conclusion and outlook

Chapter 4: Graphene-based photocatalysts
4.1. Introduction
4.2. Graphene and its derivatives
4.2.1. Graphene oxide
4.2.2. Reduced graphene oxide
4.2.3. Graphene quantum dot
4.3 General preparation techniques of graphene in photocatalysis
4.3.1. Chemical exfoliation
4.3.2. Chemical vapor deposition
4.4. General advantages of graphene
4.4.1. Conductor behavior
4.4.2. Photothermal effect
4.4.3. Large specific surface area
4.4.4. Enhancing photostability
4.4.5. Improving nanoparticle dispersion
4.5. Characterization methods
4.5.1. Transmission electron microscopy
4.5.2. Atomic force microscopy
4.5.3. Raman spectroscopy
4.5.4. X-ray photoelectron spectroscopy
4.6. Recent development in graphene-based photocatalysts
4.6.1. Metal oxide
4.6.2. Metal sulfide
4.6.3. Non-metal semiconductor
4.6.4. Metal-organic-framework
4.7. Summary and concluding remarks

Chapter 5: Graphitic carbon nitride-based photocatalysts
5.1. Introduction
5.2. Structure of g-C3N4
5.3. Preparation of g-C3N4-based photocatalysts
5.3.1. Pure g-C3N4
5.3.2. g-C3N4-based composite photocatalysts
5.4. Main photocatalytic applications of g-C3N4-based photocatalysts
5.4.1. Photocatalytic H2O splitting for H2 generation
5.4.2. Photocatalytic CO2 reduction for hydrocarbon fuels
5.4.3. Photocatalytic N2 fixation for ammonia
5.5. Strategies for optimizing photocatalytic performance of g-C3N4
5.5.1. Morphology design
5.5.2. Surface modification
5.5.3. Element doping
5.5.4. Cocatalyst loading
5.5.5. Heterojunction
5.5.6. Single-atom deposition
5.6. Challenges and prospects


Chapter 6: Organic semiconductor photocatalysts
6.1. MOFs photocatalysts
6.1.1. Synthesis of MOFs photocatalysts
6.1.2. MOFs for photocatalytic degradation of pollutants
6.1.3. MOFs for photocatalytic organic transformation
6.1.4. MOFs for photocatalytic H2 production from water
6.1.5. MOFs for photocatalytic reduction of CO2
6.2. Organic polymers photocatalysts
6.2.1. Synthesis of organic polymers photocatalysts
6.2.2. Organic polymers for photocatalytic degradation of pollutants
6.2.3. Organic polymers for organic transformation.
6.2.4. Organic polymers for photocatalytic H2 production from water
6.2.5. Organic polymers for photocatalytic reduction of CO2
6.3. COFs photocatalysts
6.3.1. Synthesis of COFs photocatalysts
6.3.2. COFs for photocatalytic degradation of pollutants
6.3.3. COFs for photocatalytic organic transformation
6.3.4. COFs for photocatalytic H2 production from water
6.3.5. COFs for photocatalytic reduction of CO2

Authors

Jiaguo Yu Xin Li Jingxiang Low