+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

3D and Circuit Integration of MEMS. Edition No. 1

  • Book

  • 528 Pages
  • April 2021
  • John Wiley and Sons Ltd
  • ID: 5839717
3D and Circuit Integration of MEMS

Explore heterogeneous circuit integration and the packaging needed for practical applications of microsystems

MEMS and system integration are important building blocks for the “More-Than-Moore” paradigm described in the International Technology Roadmap for Semiconductors. And, in 3D and Circuit Integration of MEMS, distinguished editor Dr. Masayoshi Esashi delivers a comprehensive and systematic exploration of the technologies for microsystem packaging and heterogeneous integration. The book focuses on the silicon MEMS that have been used extensively and the technologies surrounding system integration.

You’ll learn about topics as varied as bulk micromachining, surface micromachining, CMOS-MEMS, wafer interconnection, wafer bonding, and sealing. Highly relevant for researchers involved in microsystem technologies, the book is also ideal for anyone working in the microsystems industry. It demonstrates the key technologies that will assist researchers and professionals deal with current and future application bottlenecks.

Readers will also benefit from the inclusion of:- A thorough introduction to enhanced bulk micromachining on MIS process, including pressure sensor fabrication and the extension of MIS process for various advanced MEMS devices- An exploration of epitaxial poly Si surface micromachining, including process condition of epi-poly Si, and MEMS devices using epi-poly Si- Practical discussions of Poly SiGe surface micromachining, including SiGe deposition and LP CVD polycrystalline SiGe- A concise treatment of heterogeneously integrated aluminum nitride MEMS resonators and filters

Perfect for materials scientists, electronics engineers, and electrical and mechanical engineers, 3D and Circuit Integration of MEMS will also earn a place in the libraries of semiconductor physicists seeking a one-stop reference for circuit integration and the practical application of microsystems.

Table of Contents

Part I Introduction 1

1 Overview 3
Masayoshi Esashi

References 10

Part II System on Chip 13

2 Bulk Micromachining 15
Xinxin Li and Heng Yang

2.1 Process Basis of Bulk Micromachining Technologies 16

2.2 Bulk Micromachining Based on Wafer Bonding 20

2.2.1 SOI MEMS 20

2.2.2 Cavity SOI Technology 27

2.2.3 Silicon on Glass Processes: Dissolved Wafer Process (DWP) 29

2.3 Single-Wafer Single-Side Processes 34

2.3.1 Single-Crystal Reactive Etching and Metallization Process (SCREAM) 34

2.3.2 Sacrificial Bulk Micromachining (SBM) 38

2.3.3 Silicon on Nothing (SON) 40

References 45

3 Enhanced Bulk Micromachining Based on MIS Process 49
Xinxin Li and Heng Yang

3.1 Repeating MIS Cycle for Multilayer 3D structures or Multi-sensor Integration 49

3.1.1 Pressure Sensors with PS3 Structure 49

3.1.2 P+G Integrated Sensors 52

3.2 Pressure Sensor Fabrication - From MIS Updated to TUB 54

3.3 Extension of MIS Process for Various Advanced MEMS Devices 58

References 58

4 Epitaxial Poly Si Surface Micromachining 61
Masayoshi Esashi

4.1 Process Condition of Epi-poly Si 61

4.2 MEMS Devices Using Epi-poly Si 61

References 67

5 Poly-SiGe Surface Micromachining 69
Carrie W. Low, Sergio F. Almeida, Emmanuel P. Quévy, and Roger T. Howe

5.1 Introduction 69

5.1.1 SiGe Applications in IC and MEMS 70

5.1.2 Desired SiGe Properties for MEMS 70

5.2 SiGe Deposition 70

5.2.1 Deposition Methods 70

5.2.2 Material Properties Comparison 71

5.2.3 Cost Analysis 72

5.3 LPCVD Polycrystalline SiGe 73

5.3.1 Vertical Furnace 73

5.3.2 Particle Control 75

5.3.3 Process Monitoring and Maintenance 75

5.3.4 In-line Metrology for Film Thickness and Ge Content 76

5.3.5 Process Space Mapping 77

5.4 CMEMS® Process 78

5.4.1 CMOS Interface Challenges 79

5.4.2 CMEMS Process Flow 80

5.4.2.1 Top Metal Module 80

5.4.2.2 Plug Module 84

5.4.2.3 Structural SiGe Module 85

5.4.2.4 Slit Module 85

5.4.2.5 Structure Module 85

5.4.2.6 Spacer Module 85

5.4.2.7 Electrode Module 85

5.4.2.8 Pad Module 86

5.4.3 Release 86

5.4.4 Al-Ge Bonding for Microcaps 87

5.5 Poly-SiGe Applications 88

5.5.1 Resonator for Electronic Timing 88

5.5.2 Nano-electro-mechanical Switches 92

References 94

6 Metal Surface Micromachining 99
Minoru Sasaki

6.1 Background of Surface Micromachining 99

6.2 Static Device 100

6.3 Static Structure Fixed after the Single Movement 101

6.4 Dynamic Device 103

6.4.1 MEMS Switch 103

6.4.2 Digital Micromirror Device 104

6.5 Summary 111

References 111

7 Heterogeneously Integrated Aluminum Nitride MEMS  Resonators and Filters 113
Enes Calayir, Srinivas Merugu, Jaewung Lee, Navab Singh, and Gianluca Piazza

7.1 Overview of Integrated Aluminum Nitride MEMS 113

7.2 Heterogeneous Integration of Aluminum Nitride MEMS Resonators with CMOS Circuits 114

7.2.1 Aluminum Nitride MEMS Process Flow 115

7.2.2 Encapsulation of Aluminum Nitride MEMS Resonators and Filters 116

7.2.3 Redistribution Layers on Top of Encapsulated Aluminum Nitride MEMS 118

7.2.4 Selected Individual Resonator and Filter Frequency Responses 119

7.2.5 Flip-chip Bonding of Aluminum Nitride MEMS with CMOS 121

7.3 Heterogeneously Integrated Self-Healing Filters 123

7.3.1 Application of Statistical Element Selection (SES) to AlN MEMS Filters with CMOS Circuits 123

7.3.2 Measurement of 3D Hybrid Integrated Chip Stack 124

References 127

8 MEMS Using CMOS Wafer 131
Weileun Fang, Sheng-Shian Li, Yi Chiu, and Ming-Huang Li

8.1 Introduction: CMOS MEMS Architectures and Advantages 131

8.2 Process Modules for CMOS MEMS 139

8.2.1 Process Modules for Thin Films 140

8.2.1.1 Metal Sacrificial 140

8.2.1.2 Oxide Sacrificial 142

8.2.1.3 TiN-composite (TiN-C) 143

8.2.2 Process Modules for the Substrate 145

8.2.2.1 SF6 and XeF2 (Dry Isotropic) 145

8.2.2.2 KOH and TMAH (Wet Anisotropic) 146

8.2.2.3 RIE and DRIE (Front-side RIE, Backside DRIE) 146

8.3 The 2P4M CMOS Platform (0.35 μm) 148

8.3.1 Accelerometer 148

8.3.2 Pressure Sensor 149

8.3.3 Resonators 150

8.3.4 Others 152

8.4 The 1P6M CMOS Platform (0.18 μm) 154

8.4.1 Tactile Sensors 154

8.4.2 IR Sensor 156

8.4.3 Resonators 158

8.4.4 Others 160

8.5 CMOS MEMS with Add-on Materials 164

8.5.1 Gas and Humidity Sensors 164

8.5.1.1 Metal Oxide 164

8.5.1.2 Polymer 170

8.5.2 Biochemical Sensors 173

8.5.3 Pressure and Acoustic Sensors 175

8.5.3.1 Microfluidic Structures 178

8.6 Monolithic Integration of Circuits and Sensors 180

8.6.1 Multi-sensor Integration 180

8.6.1.1 Gas Sensors 180

8.6.1.2 Physical Sensors 181

8.6.2 Readout Circuit Integration 183

8.6.2.1 Resistive Sensors 183

8.6.2.2 Capacitive Sensors 184

8.6.2.3 Inductive Sensors 188

8.6.2.4 Resonant Sensors 190

8.7 Issues and Concerns 191

8.7.1 Residual Stresses, CTE Mismatch, and Creep of Thin Films 192

8.7.1.1 Initial Deformation - Residual Stress 192

8.7.1.2 Thermal Deformation - Thermal Expansion Coefficient Mismatch 195

8.7.1.3 Long-time Stability - Creep 197

8.7.2 Quality Factor, Materials Loss, and Temperature Stability 199

8.7.2.1 Anchor Loss 201

8.7.2.2 Thermoelastic Damping (TED) 201

8.7.2.3 Material and Interface Loss 201

8.7.3 Dielectric Charging 203

8.7.4 Nonlinearity and Phase Noise in Oscillators 204

8.8 Concluding Remarks 205

References 207

9 Wafer Transfer 221
Masayoshi Esashi

9.1 Introduction 221

9.2 Film Transfer 223

9.3 Device Transfer (via-last) 228

9.4 Device Transfer (Via-First) 231

9.5 Chip Level Transfer 236

References 241

10 Piezoelectric MEMS 243
T Takeshi Kobayashi (AIST)

10.1 Introduction 243

10.1.1 Fundamental 243

10.1.2 PZT Thin Films Property as an Actuator 244

10.1.3 PZT Thin Film Composition and Orientation 246

10.2 PZT Thin Film Deposition 246

10.2.1 Sputtering 246

10.2.2 Sol-Gel 248

10.2.2.1 Orientation Control 248

10.2.2.2 Thick Film Deposition 249

10.2.3 Electrode Materials and Lifetime of PZT Thin Films 250

10.3 PZT-MEMS Fabrication Process 251

10.3.1 Cantilever and Microscanner 251

10.3.2 Poling 254

References 255

Part III Bonding, Sealing and Interconnection 257

11 Anodic Bonding 259
Masayoshi Esashi

11.1 Principle 259

11.2 Distortion 262

11.3 Influence of Anodic Bonding to Circuits 263

11.4 Anodic Bonding with Various Materials, Structures and Conditions 265

11.4.1 Various Combinations 265

11.4.2 Anodic Bonding with Intermediate Thin Films 269

11.4.3 Variation of Anodic Bonding 271

11.4.4 Glass Reflow Process 274

References 276

12 Direct Bonding 279
Hideki Takagi

12.1 Wafer Direct Bonding 279

12.2 Hydrophilic Wafer Bonding 279

12.3 Surface Activated Bonding at Room Temperature 283

References 286

13 Metal Bonding 289
Joerg Froemel

13.1 Solid Liquid Interdiffusion Bonding (SLID) 290

13.1.1 Au/In and Cu/In 291

13.1.2 Au/Ga and Cu/Ga 294

13.1.3 Au/Sn and Cu/Sn 297

13.1.4 Void Formation 297

13.2 Metal Thermocompression Bonding 298

13.2.1.1 Interface Formation 299

13.2.1.2 Grain Reorientation 299

13.2.1.3 Grain Growth 300

13.3 Eutectic Bonding 301

13.3.1 Au/Si 302

13.3.2 Al/Ge 302

13.3.3 Au/Sn 304

References 304

14 Reactive Bonding 309
Klaus Vogel, Silvia Hertel, Christian Hofmann, Mathias Weiser, Maik Wiemer, Thomas Otto, and Harald Kuhn

14.1 Motivation 309

14.2 Fundamentals of Reactive Bonding 309

14.3 Material Systems 311

14.4 State of the Art 312

14.5 Deposition Concepts of Reactive Material Systems 313

14.5.1 Physical Vapor Deposition 313

14.5.1.1 Conclusion Physical Vapor Deposition and Patterning 315

14.5.2 Electrochemical Deposition of Reactive Material Systems 315

14.5.2.1 Dual Bath Technology 316

14.5.2.2 Single Bath Technology 318

14.5.2.3 Conclusion DBT and SBT 319

14.5.3 Vertical Reactive Material Systems With 1D Periodicity 319

14.5.3.1 Dimensioning 320

14.5.3.2 Fabrication 321

14.5.3.3 Conclusion 323

14.6 Bonding With RMS 323

14.7 Conclusion 326

References 326

15 Polymer Bonding 331
Xiaojing Wang and Frank Niklaus

15.1 Introduction 331

15.2 Materials for Polymer Wafer Bonding 332

15.2.1 Polymer Adhesion Mechanisms 332

15.2.2 Properties of Polymers for Wafer Bonding 335

15.2.3 Polymers Used in Wafer Bonding 337

15.3 Polymer Wafer Bonding Technology 341

15.3.1 Process Parameters in Polymer Wafer Bonding 341

15.3.2 Localized Polymer Wafer Bonding 348

15.4 Precise Wafer-to-Wafer Alignment in Polymer Wafer Bonding 350

15.5 Practical Examples of Polymer Wafer Bonding Processes 351

15.6 Summary and Conclusions 354

References 354

16 Soldering by Local Heating 361
Yu-Ting Cheng and Liwei Lin

16.1 Soldering in MEMS Packaging 361

16.2 Laser Soldering 362

16.3 Resistive Heating and Soldering 365

16.4 Inductive Heating and Soldering 368

16.5 Other Localized Soldering Processes 370

16.5.1 Self-propagative Reaction Heating 370

16.5.2 Ultrasonic Frictional Heating 371

References 374

17 Packaging, Sealing, and Interconnection 377
Masayoshi Esashi

17.1 Wafer Level Packaging 377

17.2 Sealing 378

17.2.1 Reaction Sealing 378

17.2.2 Deposition Sealing (Shell Packaging) 380

17.2.3 Metal Compression Sealing 385

17.3 Interconnection 388

17.3.1 Vertical Feedthrough Interconnection 388

17.3.1.1 Through Glass via (TGV) Interconnection 388

17.3.1.2 Through Si via (TSiV) Interconnection 393

17.3.2 Lateral Feedthrough Interconnection 395

17.3.3 Interconnection by Electroplating 401

References 404

18 Vacuum Packaging 409
Masayoshi Esashi

18.1 Problems of Vacuum Packaging 409

18.2 Vacuum Packaging by Anodic Bonding 409

18.3 Packaging by Anodic Bonding with Controlled Cavity Pressure 414

18.4 Vacuum Packaging by Metal Bonding 416

18.5 Vacuum Packaging by Deposition 417

18.6 Hermeticity Testing 417

References 420

19 Buried Channels in Monolithic Si 423
Kazusuke Maenaka

19.1 Buried Channel/Cavity in LSI and MEMS 423

19.2 Monolithic SON Technology and Related Technologies 425

19.3 Applications of SON 435

References 439

20 Through-substrate Vias 443
Zhyao Wang

20.1 Configurations of TSVs 444

20.1.1 Solid TSVs 444

20.1.2 Hollow TSVs 445

20.1.3 Air-gap TSVs 445

20.2 TSV Applications in MEMS 445

20.2.1 Signal Conduction to the Wafer Backside 446

20.2.2 CMOS-MEMS 3D Integration 446

20.2.3 MEMS and CMOS 2.5D Integration 447

20.2.4 Wafer-level Vacuum Packaging 448

20.2.5 Other Applications 450

20.3 Considerations for TSV in MEMS 450

20.4 Fundamental TSV Fabrication Technologies 450

20.4.1 Deep Hole Etching 451

20.4.1.1 Deep Reactive Ion Etching 451

20.4.1.2 Laser Ablation 452

20.4.2 Insulator Formation 454

20.4.2.1 Silicon Dioxide Insulators 454

20.4.2.2 Polymer Insulators 455

20.4.2.3 Air-gaps 455

20.4.3 Conductor Formation 455

20.4.3.1 Polysilicon 456

20.4.3.2 Single Crystalline Silicon 456

20.4.3.3 Tungsten 457

20.4.3.4 Copper 457

20.4.3.5 Other Conductor Materials 459

20.5 Polysilicon TSVs 460

20.5.1 Solid Polysilicon TSVs 460

20.5.2 Air-gap Polysilicon TSVs 463

20.6 Silicon TSVs 464

20.6.1 Solid Silicon TSVs 465

20.6.2 Air-gap Silicon TSVs 467

20.7 Metal TSVs 469

20.7.1 Solid Metal TSVs 470

20.7.2 Hollow Metal TSVs 474

20.7.3 Air-gap Metal TSVs 480

References 481

Index 493

Authors

Masayoshi Esashi