+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Fundamentals of Thermodynamics, International Adaptation. Edition No. 10

  • Book

  • 736 Pages
  • April 2022
  • Region: Global
  • John Wiley and Sons Ltd
  • ID: 5840643

Fundamentals of Engineering Thermodynamics, 10th Edition offers a comprehensive introduction to essential principles and applications in the context of engineering. In the Tenth Edition the book retains its characteristic rigor and systematic approach to thermodynamics with enhanced pedagogical features that aid in student comprehension. Detailed appendices provide instant reference; chapter summaries review terminology, equations, and key concepts; and updated data and graphics increase student engagement while enhancing understanding.

This international adapted edition offers new, and updated material with some organizational changes. It focuses on more in-depth coverage of the principles and applications of thermodynamics and incudes many  real-world realistic examples and contemporary topics to help students gain solid foundational knowledge. The edition provides a wide variety of new and updated solved practice problems, real-world engineering examples, and end-of-chapter homework problems and has been completely updated to use SI units.

Table of Contents

Table of Contents:  

1 Introduction and Preliminaries 

1.1 A Thermodynamic System and the Control Volume 

1.2 Macroscopic Versus Microscopic Points of View 

1.3 Properties and State of a Substance 

1.4 Processes and Cycles 

1.5 Units for Mass, Length, Time, and Force 

1.6 Specific Volume and Density 

1.7 Pressure 

1.8 Energy 

1.9 Equality of Temperature 

1.10 The Zeroth Law of Thermodynamics 

1.11 Temperature Scales 

1.12 Engineering Applications 

Summary 

Problems 

 

2 Properties of a Pure Substance 

2.1 The Pure Substance 

2.2 The Phase Boundaries 

2.3 The P-v-T Surface 

2.4 Tables of Thermodynamic Properties 

2.5 The Two-Phase States 

2.6 The Liquid and Solid States 

2.7 The Superheated Vapor States 

2.8 The Ideal Gas States 

2.9 The Compressibility Factor 

2.10 Equations of State 

2.11 Engineering Applications 

Summary 

Problems 

 

3 Energy Equation and First Law of Thermodynamics 

3.1 The Energy Equation 

3.2 The First Law of Thermodynamics 

3.3 The Definition of Work 

3.4 Work Done at the Moving Boundary of a Simple Compressible System 

3.5 Definition of Heat 

3.6 Heat Transfer Modes 

3.7 Internal Energy - A Thermodynamic Property 

3.8 Problem Analysis and Solution Technique 

3.9 The Thermodynamic Property Enthalpy 

3.10 The Constant-Volume and Constant-Pressure Specific Heats 

3.11 The Internal Energy, Enthalpy, and Specific Heat of Ideal Gases 

3.12 Nonuniform Distribution of States and Mass 

3.13 The Transient Heat Transfer Process 

3.15 Engineering Applications 

Summary 

Problems 

 

4 Energy Analysis for a Control Volume 

4.1 Conservation of Mass and the Control Volume 

4.2 The Energy Equation for a Control Volume 

4.3 The Steady-State Process 

4.4 Examples of Steady-State Processes 

4.5 Multiple-Flow Devices 

4.6 The Transient Flow Process 

4.7 Engineering Applications 

Summary 

Problems 

 

5 The Second Law of Thermodynamics 

5.1 Heat Engines and Refrigerators, and Heat Pump 

5.2 The Second Law of Thermodynamics 

5.3 The Reversible Process 

5.4 Factors That Render Processes Irreversible 

5.5 The Carnot Cycle 

5.6 Two Propositions Regarding the Efficiency of a Carnot Cycle 

5.7 The Thermodynamic Temperature Scale 

5.8 The Ideal Gas Temperature Scale 

5.9 Ideal Versus Real Machines 

5.10 The Inequality of Clausius 

5.11 Engineering Applications 

Summary 

Problems 

 

6 Entropy 

6.1 Entropy - A Property of a System 

6.2 The Entropy of a Pure Substance 

6.3 Entropy Change in Reversible Processes 

6.4 The Thermodynamic Property Relation 

6.5 Entropy Change of a Solid Or Liquid 

6.6 Entropy Change of an Ideal Gas 

6.7 The Reversible Polytropic Process for an Ideal Gas 

6.8 Entropy Change of a Control Mass During an Irreversible Process 

6.9 Entropy Generation and the Entropy Equation 

6.10 Principle of the Increase of Entropy 

6.11 Entropy Balance Equation in a Rate Equation 

6.12 Some General Comments About Entropy and Chaos 

Summary 

Problems 

 

7 Entropy Analysis for a Control Volume 

7.1 The Entropy Balance Equation for a Control Volume 

7.2 The Steady-State Process and the Transient Process 

7.3 The Steady-State Single-Flow Process 

7.4 Principle of the Increase of Entropy 

7.5 Engineering Applications; Energy Conservation and Device Efficiency 

Summary 

Problems 

 

8 Exergy 

8.1 Exergy, Reversible Work, and Irreversibility 

8.2 Exergy and Its Balance Equation  

8.3 The Second Law Efficiency 

8.4 Engineering Applications 

Summary 

Problems 

 

9 Gas Power and Refrigeration Systems 

9.1 Introduction to Power Systems 

9.2 Air-Standard Power Cycles 

9.3 The Stirling Cycle and the Ericsson Cycles  

9.4 Reciprocating Engine Power Cycles 

9.5 The Otto Cycle 

9.6 The Diesel Cycle 

9.7 The Dual Cycle 

9.8 The Atkinson and Miller Cycles 

9.9 The Brayton Cycle 

9.10 The Simple Gas-Turbine Cycle With a Regenerator 

9.11 Gas-Turbine Power Cycle Configurations 

9.12 The Air-Standard Cycle for Jet Propulsion 

9.13 Introduction to Refrigeration Systems  

9.14 The Air-Standard Refrigeration Cycle 

Summary 

Problems 

 

 

10 Vapor Power and Refrigeration Systems 

10.1 The Simple Rankine Cycle 

10.2 Effect of Pressure and Temperature on the Rankine Cycle 

10.3 The Reheat Cycle 

10.4 The Regenerative Cycle and Feedwater Heaters 

10.5 Deviation of Actual Cycles From Ideal Cycles 

10.6 Combined Heat and Power: Other Configurations 

10.7 The Vapor-Compression Refrigeration Cycle 

10.8 Working Fluids for Vapor-Compression Refrigeration Systems 

10.9 Deviation of the Actual Vapor-Compression Refrigeration Cycle From the Ideal Cycle 

10.10 Refrigeration Cycle Configurations 

10.11 The Absorption Refrigeration Cycle 

10.12 Exergy Analysis of Cycles 

10.13 Combined-Cycle Power and Refrigeration Systems  

Summary 

Problems 

 

11 Gas Mixtures 

11.1 General Considerations and Mixtures of Ideal Gases 

11.2 A Simplified Model of a Mixture Involving Gases and a Vapor 

11.3 The Energy Equation Applied To Gas-Vapor Mixtures 

11.4 The Adiabatic Saturation Process 

11.5 Engineering Applications - Wet-Bulb and Dry-Bulb Temperatures and the Psychrometric Chart 

Summary 

Problems 

 

12 Thermodynamic Relations 

12.1 The Clapeyron Equation 

12.2 Mathematical Relations for a Homogeneous Phase 

12.3 The Maxwell Relations 

12.4 Thermodynamic Relations Involving Enthalpy, Internal Energy, and Entropy 

12.5 Volume Expansivity and Isothermal and Adiabatic Compressibility 

12.6 Real-Gas Behavior and Equations of State 

12.7 The Generalized Chart for Changes of Enthalpy At Constant Temperature 

12.8 The Generalized Chart for Changes of Entropy At Constant Temperature 

12.9 The Property Relation for Mixtures 

12.10 Pseudopure Substance Models for Real Gas Mixtures 

12.11 Engineering Applications 

Summary 

Problems 

 

13 Chemical Reactions 

13.1 Fuels 

13.2 The Combustion Process 

13.3 Enthalpy of Formation 

13.4 Energy Analysis of Reacting Systems 

13.5 Enthalpy and Internal Energy of Combustion; Heating Value 

13.6 Adiabatic Flame Temperature 

13.7 The Third Law of Thermodynamics and Absolute Entropy 

13.8 Second-Law Analysis of Reacting Systems 

13.9 Fuel Cells 

13.10 Engineering Applications 

Summary 

Problems 

 

14 Introduction to Phase and Chemical Equilibrium 

14.1 Requirements for Equilibrium 

14.2 Equilibrium Between Two Phases of a Pure Substance 

14.3 Metastable Equilibrium 

14.4 Chemical Equilibrium 

14.5 Simultaneous Reactions 

14.6 Coal Gasification 

14.7 Ionization 

14.8 Engineering Applications 

Summary 

Problems 

 

15 Compressible Flow 

15.1 Stagnation Properties 

15.2 The Momentum Equation for a Control Volume 

15.3 Adiabatic, One-Dimensional, Steady-State Flow of an Incompressible Fluid Through a Nozzle 

15.4 Velocity of Sound in an Ideal Gas 

15.5 Reversible, Adiabatic, One-Dimensional Flow of an Ideal Gas Through a Nozzle 

15.6 Mass-Flow Rate of an Ideal Gas Through an Isentropic Nozzle 

15.7 Normal Shock in an Ideal Gas Flowing Through a Nozzle 

15.8 Nozzle and Diffuser Coefficients 

Summary 

Problems 

 

Contents of Appendix 

Appendix A SI Units: Single-State Properties 

Appendix B SI Units: Thermodynamic Tables 

Appendix C Ideal Gas Specific Heat 

Appendix D Equations of State 

Appendix E Figures 

Index 

Authors

Claus Borgnakke University of Michigan. Richard E. Sonntag University of Michigan.