+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Power Electronics for Green Energy Conversion. Edition No. 1

  • Book

  • 640 Pages
  • July 2022
  • John Wiley and Sons Ltd
  • ID: 5841572
POWER ELECTRONICS for GREEN ENERGY CONVERSION

Written and edited by a team of renowned experts, this exciting new volume explores the concepts and practical applications of power electronics for green energy conversion, going into great detail with ample examples, for the engineer, scientist, or student.

Power electronics has emerged as one of the most important technologies in the world and will play a big role in the conversion of the present power grid systems into smart grids. Applications like HVDC systems, FACTs devices, uninterruptible power systems, and renewable energy systems totally rely on advances in power electronic devices and control systems. Further, the need for renewable energy continues to grow, and the complete departure of fossil fuels and nuclear energy is not unrealistic thanks to power electronics. Therefore, the increasingly more important role of power electronics in the power sector industry remains paramount.

This groundbreaking new volume aims to cover these topics and trends of power electronic converters, bridging the research gap on green energy conversion system architectures, controls, and protection challenges to enable their wide-scale implementation. Covering not only the concepts of all of these topics, the editors and contributors describe real-world implementation of these ideas and how they can be used for practical applications. Whether for the engineer, scientist, researcher, or student, this outstanding contribution to the science is a must-have for any library.

Table of Contents

Preface xvii

1 Green Energy Technology-Based Energy-Efficient Appliances for Buildings 1
Avanish Gautam Singh, Rahul Rajeevkumar Urs, Rajeev Kumar Chauhan and Prabhakar Tiwari

Nomenclature 2

Variables 2

1.1 Balance of System Appliances Needed for Green Energy Systems 3

1.1.1 Grid Interactive Inverters for Buildings with AC Wiring 4

1.1.2 Grid Interactive Inverter with No Battery Backup 4

1.1.3 Main Grid-Interactive Inverter (Hybrid Inverter) 6

1.1.4 DC-DC Converter for DC Building 6

1.1.5 Bidirectional Inverter 10

1.1.6 Battery Bank 11

1.2 Major Green Energy Home Appliances 13

1.2.1 dc Air Conditioners 14

1.2.2 dc Lighting 15

1.2.3 dc Refrigeration 15

1.2.4 Emerging Products for Grid Connected Homes and Businesses 17

1.2.5 Electrical Vehicle 17

1.3 Energy Savings Through Green Appliances 18

1.3.1 Appliance Scheduling 20

1.3.2 A Case Study of a Mid-Ranged Home with Green Home Appliances Versus Conventional Home Appliances: A Comparison of 1 Day Consumption 23

1.4 Conclusion 26

References 27

2 Integrated Electric Power Systems and Their Power Quality Issues 29
Akhil Gupta, Kamal Kant Sharma and Gagandeep Kaur

2.1 Introduction 30

2.2 Designing of a Hybrid Energy System 32

2.3 Classification of Hybrid Energy Systems 34

2.3.1 Hybrid Wind-Solar System 34

2.3.2 Hybrid Diesel-Wind System 35

2.3.3 Hybrid Wind-Hydro Power System 36

2.3.4 Hybrid Fuel Cell-Solar System 37

2.3.5 Hybrid Solar Thermal System 37

2.4 Power Quality Implications 38

2.4.1 Interruption 39

2.4.2 Undervoltage or Brownout 40

2.4.3 Voltage Sag or Dip 41

2.4.4 Noise 42

2.4.5 Frequency 43

2.4.6 Harmonic 43

2.4.7 Notching 44

2.4.8 Short-Circuit 45

2.4.9 Swell 45

2.4.10 Transient or Surges 45

2.5 Conclusion 62

References 63

3 Renewable Energy in India and World for Sustainable Development 67
Kuldeep Jayaswal, D. K. Palwalia and Aditya Sharma

3.1 Introduction 67

3.2 The Energy Framework 68

3.3 Status of Solar PV Energy 73

3.4 Boons of Renewable Energy 75

3.5 Energy Statistics 76

3.5.1 Coal 76

3.5.2 Natural Gas 78

3.5.3 Biofuels 78

3.5.4 Electricity 80

3.6 Renewable Energy Resources 82

3.7 Conclusion 85

Abbreviations 86

References 86

4 Power Electronics: Technology for Wind Turbines 91
K.T. Maheswari, P. Prem and Jagabar Sathik

4.1 Introduction 92

4.1.1 Overview of Wind Power Generation 93

4.1.1.1 India-Wind Potential 94

4.1.2 Advancement of Wind Power Technologies 95

4.1.3 Power Electronics Technologies for Wind Turbines 96

4.2 Power Converter Topologies for Wind Turbines 98

4.2.1 Matrix Converter 99

4.2.2 Z Source Matrix Converter 100

4.3 Quasi Z Source Direct Matrix Converter 104

4.3.1 Principle of Operation 104

4.3.2 Modulation Strategy 107

4.3.2.1 Closed Loop Control of QZSDMC 107

4.3.3 Simulation Results and Discussion 108

4.4 Conclusion 111

References 111

5 Investigation of Current Controllers for Grid Interactive Inverters 115
Aditi Chatterjee and Kanungo Barada Mohanty

5.1 Introduction 116

5.2 Current Control System for Single-Phase Grid Interactive Inverters 117

5.2.1 Hysteresis Current Controller 119

5.2.2 Proportional Integral Current Control 121

5.2.3 Proportional Resonant Current Control 125

5.2.4 Dead Beat Current Control 129

5.2.5 Model Predictive Current Control 131

5.2.5.1 Analysis of Discretized System Model Dynamics 134

5.2.5.2 Cost Function Assessment 135

5.3 Simulation Results and Analysis 137

5.3.1 Results in Steady-State Operating Mode 138

5.3.2 Results in Dynamic Operating Mode 139

5.3.3 Comparative Assessment of the Current Controllers 145

5.3.4 Hardware Implementation 145

5.3.4.1 Hardware Components 147

5.3.4.2 Digital Implementation 150

5.4 Experimental Results 151

5.5 Future Scope 153

5.6 Conclusion 154

References 155

6 Multilevel Converter for Static Synchronous Compensators: State-of-the-Art, Applications and Trends 159
Dayane do Carmo Mendonça, Renata Oliveira de Sousa, João Victor Matos Farias, Heverton Augusto Pereira, Seleme Isaac Seleme Júnior and Allan Fagner Cupertino

6.1 Introduction 160

6.2 STATCOM Realization 164

6.2.1 Two-Level Converters 164

6.2.2 Early Multilevel Converters 168

6.2.3 Cascaded Multilevel Converters 170

6.2.4 Summary of Topologies 174

6.3 STATCOM Control Objectives 175

6.3.1 Operating Principle 175

6.3.2 Control Objectives 176

6.3.3 Modulation Schemes 179

6.3.3.1 Nlc 181

6.3.3.2 Ps-pwm 181

6.4 Benchmarking of Cascaded Topologies 187

6.4.1 Design Assumptions 187

6.4.1.1 Y-chb 190

6.4.1.2 ∆-chb 191

6.4.1.3 Hb-mmc 193

6.4.1.4 Fb-mmc 196

6.4.2 Current Stress in Semiconductor Devices 198

6.4.3 Current Stress in Submodule Capacitor 201

6.4.4 Comparison of Characteristics 205

6.5 STATCOM Trends 209

6.5.1 Cost Reduction 209

6.5.2 Reliability Requirements 212

6.5.3 Modern Grid Codes Requirements 215

6.5.4 Energy Storage Systems 216

6.6 Conclusions and Future Trends 217

References 218

7 Topologies and Comparative Analysis of Reduced Switch Multilevel Inverters for Renewable Energy Applications 221
Aishwarya V. and Gnana Sheela K.

7.1 Introduction 221

7.2 Reduced-Switch Multilevel Inverters 224

7.3 Comparative Analysis 251

7.4 Conclusion 258

References 258

8 A Novel Step-Up Switched-Capacitor-Based Multilevel Inverter Topology Feasible for Green Energy Harvesting 265
Erfan Hallaji and Kazem Varesi

8.1 Introduction 266

8.2 Proposed Basic Topology 269

8.3 Proposed Extended Topology 270

8.3.1 First Algorithm (P 1) 270

8.3.2 Second Algorithm (P 2) 271

8.4 Operational Mode 272

8.4.1 Mode A 275

8.4.2 Mode B 275

8.4.3 Mode c 275

8.4.4 Mode d 276

8.4.5 Mode E 276

8.4.6 Mode F 277

8.4.7 Mode G 277

8.4.8 Mode H 277

8.4.9 Mode I 278

8.4.10 Mode J 278

8.4.11 Mode K 279

8.4.12 Mode l 279

8.4.13 mode m 279

8.4.14 Mode N 280

8.4.15 Mode O 280

8.4.16 Mode P 281

8.4.17 Mode Q 281

8.5 Standing Voltage 282

8.5.1 Standing Voltage (SV) for the First Algorithm (P 1) 283

8.5.2 Standing Voltage (SV) for the Second Algorithm (P 2) 283

8.6 Proposed Cascaded Topology 283

8.6.1 First Algorithm (S 1) 284

8.6.2 Second Algorithm (S 2) 284

8.6.3 Third Algorithm (S 3) 284

8.6.4 Fourth Algorithm (S 4) 285

8.6.5 Fifth Algorithm (S 5) 285

8.6.6 Sixth Algorithm (S 6) 286

8.7 Modulation Method 286

8.8 Efficiency and Losses Analysis 287

8.8.1 Switching Losses 287

8.8.2 Conduction Losses 288

8.8.3 Ripple Losses 288

8.8.4 Efficiency 288

8.9 Capacitor Design 289

8.10 Comparison Results 291

8.11 Simulation Results 295

8.12 Conclusion 299

References 299

9 Classification of Conventional and Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Generation Systems 303
Mohammed Salah Bouakkaz, Ahcene Boukadoum, Omar Boudebbouz, Nadir Boutasseta, Issam Attoui and Ahmed Bouraiou

9.1 Introduction 304

9.1.1 Classification of MPPT Techniques 306

9.1.2 MPPT Algorithms Based on PV Side Parameters 307

9.2 MPPT Algorithms Based on Load Side Parameters 307

9.3 Conventional MPPT Algorithms 308

9.3.1 Indirect Techniques 308

9.3.1.1 MPPT Based on Constant Voltage (CV) 308

9.3.1.2 Fractional Voltage (FV) Technique 309

9.3.1.3 Fractional Currents (FC) Technique 310

9.3.2 Direct Techniques 310

9.3.2.1 Hill Climbing (HC) Technique 311

9.3.2.2 Perturb & Observe (P&O) Technique 312

9.3.2.3 Incremental Conductance (IC) 313

9.4 Soft Computing (SC) MPPT Techniques 314

9.4.1 MPPT Techniques Based on Artificial Intelligence (AI) 314

9.4.1.1 Fuzzy Logic Control (FLC) Technique 314

9.4.1.2 Artificial Neural Network (ANN) 316

9.4.1.3 Adaptive Neuro Fuzzy Inference System (anfis) 316

9.4.1.4 The Bayesian Network (BN) 317

9.4.2 Bioinspired (BI)-Based MPPT Techniques 317

9.4.2.1 Particle Swarm Optimization (PSO) 317

9.4.2.2 Whale Optimization Algorithm (WOA) 318

9.4.2.3 Moth-Flame Optimization (MFO) 322

9.5 Hybrid MPPT Techniques 322

9.5.1 Conventional with Conventional (CV/CV) 322

9.5.1.1 Fractional Current (FC) with Incremental Conductance (IC) 323

9.5.2 Soft Computing with Soft Computing (SC/SC) 323

9.5.2.1 Fuzzy Logic Control with Genetic Algorithm (FLC/GA) 323

9.5.3 Conventional with Soft Computing (CV/SC) 324

9.5.3.1 Hill Climbing with Fuzzy Logic Control (hc/flc) 324

9.5.4 Other Classifications of Hybrid Techniques 325

9.6 Discussion 325

9.7 Conclusion 327

References 328

10 A Simulation Analysis of Maximum Power Point Tracking Techniques for Battery-Operated PV Systems 335
Pankaj Sahu and Rajiv Dey

10.1 Introduction 336

10.2 Background of Conventional MPPT Methods 339

10.2.1 Perturb & Observe (P&O) 340

10.2.2 Incremental Conductance (IC) 341

10.2.3 Fractional Short Circuit Current (FSCC) 342

10.2.4 Fractional Open Circuit Voltage (FOCV) 343

10.2.5 Ripple Correlation Control (RCC) 344

10.3 Simulink Model of PV System with MPPT 348

10.4 Results and Discussions 350

10.4.1 (a) Simulation Results for P&O Method 351

10.4.2 (b) Simulation Results for Incremental Conductance (IC) Method 356

10.4.3 (c) Fractional Open Circuit Voltage (FOCV) Method 361

10.4.4 (d) Fractional Short Circuit Current (FSCC) Method 366

10.4.5 (e) Ripple Correlation Control (RCC) 371

10.4.6 (f) Performance Comparison 376

10.5 Conclusion 377

References 378

11 Power Electronics: Technology for Grid-Tied Solar Photovoltaic Power Generation Systems 381
K. Sateesh Kumar, A. Kirubakaran, N. Subrahmanyam and Umashankar Subramaniam

11.1 Introduction 382

11.2 Grid-Tied SPVPGS Technology 383

11.2.1 Module Inverters 384

11.2.2 String Inverters 385

11.2.3 Multistring Inverters 386

11.2.4 Central Inverters 386

11.3 Classification of PV Inverter Configurations 386

11.3.1 Single-Stage Isolated Inverter Configuration 387

11.3.2 Single-Stage Nonisolated Inverter Configuration 387

11.3.3 Two-Stage Isolated Inverter Configuration 388

11.3.4 Two-Stage Nonisolated Inverter Configuration 389

11.4 Analysis of Leakage Current in Nonisolated Inverter Topologies 390

11.5 Important Standards Dealing with the Grid-Connected Spvpgs 393

11.5.1 dc Current Injection and Leakage Current 393

11.5.2 Individual Harmonic Distortion and Total Harmonic Distortion 395

11.5.3 Voltage and Frequency Requirements 395

11.5.4 Reactive Power Capability 395

11.5.5 Anti-Islanding Detection 395

11.6 Various Topologies of Grid-Tied SPVPGS 396

11.6.1 AC Module Topologies 396

11.6.2 String Inverter Topologies 399

11.6.3 Multistring Inverter Topologies 405

11.6.4 Central Inverter Topologies 407

11.7 Scope for Future Research 415

11.8 Conclusions 415

References 416

12 Hybrid Solar-Wind System Modeling and Control 419
Issam Attoui, Naceredine Labed, Salim Makhloufi, Mohammed Salah Bouakkaz, Ahmed Bouraiou, Nadir Boutasseta, Nadir Fergani and Brahim Oudjani

12.1 Introduction 420

12.2 Description of the Proposed System 424

12.3 Model of System 425

12.3.1 Model of Wind Turbine 425

12.3.2 Dynamic Model of the DFIG 426

12.3.3 Mathematic Model of Filter 428

12.3.4 Medium-Term Energy Storage 429

12.3.5 Short-Term Energy Storage 429

12.3.6 Wind Speed Model 430

12.3.7 Photovoltaic Array Model 430

12.3.8 Boost Converter Model 432

12.4 System Control 433

12.4.1 Grid Side Converter GSC Control 434

12.4.2 Rotor Side Converter RSC Control 434

12.4.3 MPPT Control Algorithm for Wind Turbine 435

12.4.4 Two-Level Energy Storage System and Control Strategy 435

12.4.5 PSO-Based GMPPT for PV System 435

12.5 Results and Interpretation 438

12.6 Conclusion 445

References 445

13 Static/Dynamic Economic-Environmental Dispatch Problem Using Cuckoo Search Algorithm 453
Larouci Benyekhlef, Benasla Lahouari and Sitayeb Abdelkader

13.1 Introduction 454

13.2 Problem Formulation 455

13.2.1 Static Economic Dispatch 455

13.2.2 Dynamic Economic Dispatch (DED) 456

13.3 Calculation of CO2, Ch4, and N2O Emitted During the Combustion 457

13.3.1 Calculation of CO2 457

13.3.2 Calculating CH4 and N2O Emissions 458

13.4 The Cuckoo Search Algorithms 459

13.5 Application 460

13.5.1 Case I: The Static Economic Dispatch 463

13.5.2 Case II: The Dynamic Economic Dispatch 465

13.6 Conclusions 470

References 471

14 Power Electronics Converters for EVs and Wireless Chargers: An Overview on Existent Technology and Recent Advances 475
Sahand Ghaseminejad Liasi, Faezeh Kardan and Mohammad Tavakoli Bina

14.1 Introduction 476

14.2 Hybrid Power System for EV Technology 477

14.3 DC/AC Converters to Drive the EV 478

14.4 DC/DC Converters for EVs 479

14.4.1 Isolated and Nonisolated DC/DC Converters for EV Application 479

14.4.2 Multi-Input DC/DC Converters in Hybrid EVs 480

14.5 WBG Devices for EV Technology 481

14.6 High-Power and High-Density DC/DC Converters for Hybrid and EV Applications 483

14.7 dc Fast Chargers and Challenges 484

14.7.1 Fast-Charging Station Architectures 484

14.7.2 Impacts of Fast Chargers on Power Grid 488

14.7.3 Fast-Charging Stations Connected to MV Grid and Challenges 489

14.7.3.1 SST-Based EV Fast-Charging Station 490

14.8 Wireless Charging 491

14.8.1 Short History of Wireless Charging 492

14.8.2 Proficiencies 493

14.8.3 Deficiencies 493

14.9 Standards 494

14.9.1 Sae J 1772 494

14.9.1.1 Revisions of SAE J 1772 495

14.9.2 Iec 62196 495

14.9.3 Sae J 2954 497

14.10 WPT Technology in Practice 497

14.11 Converters 499

14.12 Resonant Network Topologies 501

14.13 Appropriate DC/DC Converters 501

14.14 Single-Ended Wireless EV Charger 502

14.15 WPT and EV Motor Drive Using Single Inverter 505

14.15.1 Problem Definition 507

14.15.2 Wave Shaping Analysis 507

14.15.3 Convertor System 510

14.15.4 WPT System and Motor Drive Integration 512

14.16 Conclusion 513

References 513

15 Recent Advances in Fast-Charging Methods for Electric Vehicles 519
R. Chandrasekaran, M. Sathishkumar Reddy, B. Raja and K. Selvajyothi

15.1 Introduction 519

15.2 Levels of Charging 520

15.2.1 Level 1 Charging 520

15.2.2 Level 2 Charging 520

15.2.3 Level 3 Charging 522

15.3 EV Charging Standards 523

15.4 Battery Charging Methods 524

15.5 Constant Voltage Charging 525

15.6 Constant Current Charging 526

16.7 Constant Current-Constant Voltage (CC-CV) Charging 527

15.8 Multicurrent Level Charging 528

15.9 Pulse Charging 529

15.10 Converters and Its Applications 530

15.10.1 Buck Converter 532

15.10.2 Boost Converter 533

15.10.3 Interleaved Buck Converter 534

15.10.4 Interleaved Boost Converter 535

15.11 Design of DC-DC Converters 536

15.12 Results and Discussions 538

15.13 Conclusion 542

References 543

16 Recent Advances in Wireless Power Transfer for Electric Vehicle Charging 545
Sivagami K., Janamejaya Channegowda and Damodharan P.

16.1 Need for Wireless Power Transfer (WPT) in Electric Vehicles (EV) 546

16.2 WPT Theory 546

16.3 Operating Principle of IPT 550

16.3.1 Ampere’s Law 551

16.3.2 Faraday’s Law 551

16.4 Types of Wires 552

16.4.1 Litz Wire 552

16.4.2 Litz Magneto-Plate Wire (LMPW) 552

16.4.3 Tubular Conductor 552

16.4.4 REBCO Wire 553

16.4.5 Copper Clad Aluminium Wire 553

16.5 Ferrite Shapes 553

16.6 Couplers 554

16.7 Types of Charging 556

16.7.1 Static Charging 556

16.7.2 Dynamic Charging 558

16.7.3 Quasi-Dynamic Charging 559

16.8 Compensation Techniques 560

16.9 Power Converters in WPT Systems 564

16.9.1 Primary Side Converter 565

16.9.1.1 Unidirectional Charger 565

16.9.1.2 Bidirectional Charger 566

16.9.2 Secondary Side Converter 567

16.9.3 Recent Novel Converter 567

16.10 Standards 567

16.11 Conclusion 570

References 570

17 Flux Link Control Modulation Technique for Improving Power Transfer Characteristics of Bidirectional DC/DC Converter Used in FCEVS 573
Bandi Mallikarjuna Reddy, Naveenkumar Marati, Kathirvel Karuppazhagi and Balraj Vaithilingam

17.1 Introduction 574

17.2 GDAB-IBDC Converter 575

17.2.1 Analysis and Modeling of GDAB-IBDC 576

17.3 FLC Modulation Technique 580

17.3.1 Modes of Operation of GDAB-IBDC Converter 582

17.3.2 Analytical Modeling of SPS and FLC Modulation 583

17.4 Dead Band Analysis of GDAB-IBDC Converter 589

17.5 Simulation and Results 591

17.6 Conclusion 598

References 598

Index 601          

Authors

Mahajan Sagar Bhaskar Prince Sultan University, Riyadh, Saudi Arabia. Nikita Gupta University Institute of Technology, Himachal Pradesh University, India. P. Sanjeevikumar University of South-Eastern Norway, Norway. Jens Bo Holm-Nielsen Aalborg University, Esbjerg, Denmark. Umashankar Subramaniam College of Engineering, Prince Sultan University, Saudi Arabia.