+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Perovskite Solar Cells. Materials, Processes, and Devices. Edition No. 1

  • Book

  • 576 Pages
  • November 2021
  • John Wiley and Sons Ltd
  • ID: 5842692

Presents a thorough overview of perovskite research, written by leaders in the field of photovoltaics  

The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. 

Perovskite Solar Cells: Materials, Processes, and Devices provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices.  

  • Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials 
  • Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory 
  • Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation 
  • Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption 
  • Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells 

Perovskite Solar Cells: Materials, Processes, and Devices is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers. 

Table of Contents

Foreword xv

1 Chemical Processing of Mixed-Cation Hybrid Perovskites: Stabilizing Effects of Configurational Entropy 1
Feray Ünlü, Eunhwan Jung, Senol Öz, Heechae Choi, Thomas Fischer, andSanjay Mathur

1.1 Introduction 1

1.1.1 Stability Issues of Organic-Inorganic Hybrid Perovskites 2

1.2 Crystal Structure of Perovskites 4

1.2.1 Goldschmidt Tolerance Factor for 3D Structure 5

1.2.2 Octahedral Factor 5

1.2.3 Role of A-Site Cation 7

1.2.4 Theoretical Calculations: Molecular Dynamics of A-Site Cation 8

1.2.5 Entropy of Mixing: Configurational Effects in Mixed-Cation Perovskites 11

1.3 Multiple A-Site Cation Perovskites 12

1.3.1 FA+/MA+ Alloying for Higher Phase Stability and Photovoltaic Efficiency 12

1.3.2 Cesium Inclusion for Thermal Stability 13

1.3.3 Rb+ Small-Cation Influence on Perovskite Structure for Thermal Stability 15

1.3.4 Guanidinium Large-Cation Influence on Perovskite Structure for Stability 16

1.3.5 Triple- and Quadruple-Cation Hybrid Perovskites for Stability and Optimum Performance 17

1.3.6 Larger Organic Cations: Reducing Dimensionality for Improved Thermal Stability 20

1.4 Conclusion and Perspectives 22

Acknowledgments 24

References 24

2 Flash Infrared Annealing for Processing of Perovskite Solar Cells 33
Sandy Sánchez and Anders Hagfeldt

2.1 Introduction 33

2.2 Perovskite Crystal Nucleation and Growth from Solution 34

2.2.1 The Antisolvent Dripping Method 34

2.2.2 Thermodynamics of Nucleation and Crystal Growth 34

2.2.3 Kinetic Process for Rapid Thermal Growth 36

2.3 Rapid Thermal Annealing 37

2.3.1 The FIRA Method 37

2.3.2 FIRA and Antisolvent 39

2.3.3 Perovskite Film Crystallization for a Single IR Pulse 40

2.3.4 Perovskite Crystallization with Pulse Duration 42

2.3.5 Pulsed FIRA Method for Inorganic Perovskite Composition 45

2.3.6 Warmed-Pulsed FIRA Method 46

2.3.7 Crystallization Behavior of Mixed Perovskite Solutions 47

2.4 Structural Analysis of FIRA-Annealed Perovskite Films with Variable Pulse Time 50

2.4.1 Planar and Mesoporous Substrates 50

2.4.2 Crystal Structure Analysis 51

2.4.3 Structure of the Intermediate Phases 53

2.4.4 Internal Crystal Domain Structure 56

2.5 A Cost-Effective and Environmentally Friendly Method 57

2.5.1 Life-Cycle Assessment (LCA) of the Perovskite Film Synthesis Methods 57

2.5.2 Relative Cost and Environmental Impact of the AS and FIRA Methods 58

2.6 Application for MAPI3 Perovskite Solar Cells 60

2.6.1 Single IR Pulse and MAPbI3 Perovskite Composition 60

2.6.2 Large-Area Devices 60

2.7 Planar Devices Architecture and Mixed Perovskite Composition 64

2.7.1 Thin Film Analysis 64

2.7.2 PV Performance and Electronic Characteristic of the Devices 64

2.8 Pulsed FIRA for Inorganic Perovskite Solar Cells 67

2.8.1 Thin Film Analysis 67

2.8.2 PV Performance 68

2.9 Rapid Manufacturing of PSCs with an Adapted Perovskite Chemical Composition 71

2.9.1 Rapid Annealed TiO2 Mesoscopic Film 71

2.9.2 FCG Perovskite Stabilized with TBAI 72

2.9.3 PV Performance of the Manufactured PSCs 73

2.10 Outlook and Technical Details 75

2.10.1 Optimization of FIRA Process for Tandem Solar Cells 75

2.10.2 Automatic Roll-to-Roll System for the FIRA Manufacture of Perovskite Solar Cells 77

2.10.3 Electronic Setup 78

2.10.4 LabView Interface 78

2.11 Experimental Methods 80

2.11.1 Manufacture of Perovskite Solar Cells 80

2.11.2 Perovskite Solution Preparation 80

2.11.3 Antisolvent Method 81

2.11.4 FIRA Method 81

2.11.5 HTM Deposition and Back Contact Evaporation 81

2.11.6 Device Characterization 82

2.11.7 Material Characterization 82

2.11.8 Temperature Measurement 83

List of Abbreviations 83

Acknowledgments 84

References 84

3 Passivation of Hybrid/Inorganic Perovskite Solar Cells 91
Muhammad Akmal Kamarudin and Shuzi Hayase

3.1 Introduction 91

3.1.1 Types of Passivation 93

3.1.1.1 Bulk Passivation 93

3.1.1.2 Surface Passivation 93

3.1.2 Passivating Materials 95

3.1.2.1 Metal Halides 95

3.1.2.2 Organic Acids ( - COOH, - SOOH, and - POOH) 96

3.1.2.3 Organosulfur Compound 98

3.1.2.4 Amines 98

3.1.2.5 Graphene 100

3.1.2.6 Metal Oxides 100

3.1.2.7 Organic Halides 102

3.1.2.8 Quantum Dots 104

3.1.2.9 Polymers 104

3.1.2.10 Zwitterions 107

3.2 Conclusion 107

References 108

4 Tuning Interfacial Effects in Hybrid Perovskite Solar Cells 113
Rafael S. Sánchez, Lionel Hirsch, and Dario M. Bassani

4.1 Strategies for Interfacial Deposition and Analysis 113

4.1.1 Tailoring the PS Properties and Microstructural Interface Through Solvent Engineering 114

4.1.2 Tailoring the PS Properties and Microstructural Interface Through Non-solvent Methods 117

4.2 Defect Formation in PS Films and Interfaces 118

4.2.1 Defect Formation in the PS Bulk and at the Surface During Film Crystallization 119

4.2.2 Defect Formation and Dynamics of PSC Under Working Conditions 122

4.3 Passivation Strategies of PS 126

4.4 Measuring and Tuning the Work Function and Surface Potential in PSC 130

4.5 Tuning the Wettability and Compatibility Between Layers 138

4.6 Effect on Device Efficiency and Lifetime 142

4.6.1 Moisture Effects on PS Films and PSC 142

4.6.2 Photoinduced Degradation of PS Films and PSC 146

4.6.3 Thermal Degradation of PS Films and PSC 149

4.6.4 Other Sources of Degradation in PSC 150

4.7 Conclusions and Prospects 153

References 154

5 All-inorganic Perovskite Solar Cells 175
Yaowen Li and Yongfang Li

5.1 Introduction 175

5.2 Basic Knowledge of All-inorganic Pero-SCs 176

5.2.1 Crystalline Structure 176

5.2.2 Stability 177

5.2.2.1 Thermal Stability 177

5.2.2.2 Phase Stability 177

5.2.2.3 Light Stability 178

5.2.3 Working Principle 178

5.3 Lead-Based Inorganic Pero-SCs 179

5.3.1 CsPbI3 179

5.3.1.1 Additive Engineering 181

5.3.1.2 Organic Compound Treatment 181

5.3.1.3 Crystal Size Reduction and Morphology Optimization 183

5.3.1.4 Current Density Increase 185

5.3.2 CsPbI2Br 185

5.3.2.1 Fabrication Methods 185

5.3.2.2 Ionic Incorporation 189

5.3.2.3 Interface Engineering 191

5.3.3 CsPbIBr2 193

5.3.3.1 Crystal Growth 194

5.3.3.2 Ionic Incorporation 195

5.3.3.3 Interface Engineering 196

5.3.4 CsPbBr3 196

5.3.4.1 Fabrication Method 197

5.3.4.2 Ionic Incorporation 199

5.3.4.3 Interface Engineering 199

5.4 Tin-Based Inorganic Pero-SCs 200

5.4.1 CsSnI3 200

5.4.1.1 Fabrication Methods 201

5.4.1.2 Additive Engineering 203

5.4.1.3 Substrate Control 203

5.4.2 CsSnIxBr3-x 204

5.5 Other Inorganic Pero-SCs 204

5.5.1 Ge-Based Inorganic Pero-SCs 205

5.5.2 Sb-Based Inorganic Pero-SCs 205

5.5.3 Bi-Based Inorganic Pero-SCs 206

5.5.3.1 A3B2I9 Structure 206

5.5.3.2 Other Structures 207

5.5.4 Double B site Cation Perovskite 207

5.6 Conclusion 209

References 210

6 Tin Halide Perovskite Solar Cells 223
Thomas Stergiopoulos

6.1 Introduction 223

6.2 Why Tin Halide Perovskites? 223

6.2.1 Tin as the Sole Viable Alternative 223

6.2.2 Favorable Optoelectronic Properties of Tin Perovskites 224

6.2.2.1 Low Bandgap 224

6.2.2.2 High Charge Carrier Mobility 224

6.2.2.3 Similar Properties with Lead Perovskites 225

6.3 Concerns About Tin-Based Perovskites 225

6.3.1 Severe Non-radiative Recombination 225

6.3.2 Poor Stability 226

6.4 Control of Hole Doping 227

6.4.1 Sn2+ Compensation/Necessity of Adding SnF2 227

6.4.2 Additives to Improve SnF2 Dispersion 227

6.4.3 Elimination of Sn4+ Impurities 229

6.4.3.1 SnI2 Purification 229

6.4.3.2 Reaction of Sn Powder with Sn4+ Residuals 229

6.4.3.3 Addition of Reducing Agents 230

6.5 Films Deposition 231

6.5.1 Crystallization Tuning 231

6.5.1.1 Solvent Engineering 231

6.5.1.2 Additives to Slow Down Crystallization Kinetics 232

6.5.2 Posttreatment Strategies/Surface Trap Passivation 233

6.6 Contacts/Interface Engineering 234

6.7 Ongoing Challenges 235

6.7.1 Efficiency 235

6.7.2 Stability 238

6.7.3 Performance over the S-Q Limit/Toward Multijunction Solar Cells 238

6.7.4 Sustainability 241

6.8 Conclusion 241

Acknowledgments 242

References 242

7 Low-Temperature and Facile Solution-Processed Two-Dimensional Materials as Electron Transport Layer for Highly Efficient Perovskite Solar Cells 247
Shao Hui, Najib H. Ladi, Han Pan, Yan Shen, and Mingkui Wang

7.1 Introduction 247

7.2 Charge Transport in Perovskite Solar Cells 249

7.3 Brief Development of Perovskite Solar Cells 251

7.4 Functions and Requirements of Electron Transport Layer 253

7.5 Features and Advantages of Two-Dimensional Electron Transport Materials 256

7.6 Van der Waals Heterojunctions 256

7.7 Quantum Confinement Effect in Two-Dimensional Electron Transport Materials and Its
Application 258

7.8 Other Physical Properties of Two-Dimensional Electron Transport Materials 259

7.9 Synthesis of Various Two-Dimensional Materials 260

7.10 Application of Two-Dimensional Material as an Electron Transport Layer in Perovskite Solar Cells 262

7.11 Conclusion and Outlook 266

List of Abbreviations 267

References 268

8 Metal Oxides in Stable and Flexible Halide Perovskite Solar Cells: Toward Self-Powered Internet of Things 273
Carlos Pereyra, Haibing Xie, Amir N. Shandy, Vanessa Martínez, HenckPierre, Elia Santigosa, Daniel A. Acuña-Leal, Laia Capdevila, Quentin Billon,Löis Mergny, María Ramos-Payán, Mónica Gomez, Bindu Krishnan, MariaMuñoz, David M. Tanenbaum, Anders Hagfeldt, and Monica Lira-Cantu

8.1 Introduction 273

8.2 Metal Oxides in Normal (n-i-p), Inverted (p-i-n) and “Oxide-Sandwich” Halide Perovskite Solar Cells 275

8.3 Mesoporous Metal Oxide Bilayers in Highly Stable Carbon-Based Perovskite Solar Cells 277

8.4 Solution-Processable Metal Oxides for Flexible Halide Perovskite Solar Cells 288

8.5 Characterization of PSC by Electrochemical Impedance Spectroscopy (EIS) 294

8.6 Conclusions 299

Acknowledgments 299

References 300

9 Electron Transport Layers in Perovskite Solar Cells 311
Fatemeh Jafari, Mehrad Ahmadpour, Um Kanta Aryal, Mariam Ahmad,Michela Prete, Naeimeh Torabi, Vida Turkovic, Horst-Günter Rubahn, AbbasBehjat, and Morten Madsen

9.1 Introduction 311

9.2 Requirements of Ideal Electron Transport Layers (ETL) 312

9.3 Overview of Electron Transport Materials 314

9.3.1 Metal Oxide Electron Transport Materials 314

9.3.2 Organic Electron Transport Materials 317

9.4 The Architectures of Perovskite Solar Cells 321

9.4.1 Mesoscopic Perovskite Solar Cells 321

9.4.2 Planar Perovskite Solar Cells 323

Acknowledgments 324

References 324

10 Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells 331
Meenakshi Pegu, Shahzada Ahmad, and Samrana Kazim

10.1 Introduction 331

10.1.1 Device Structure of Perovskite Solar Cells 332

10.1.2 Charge Transport in Perovskite Solar Cells and Role of HTM 333

10.2 Hole-Transporting Material for Perovskite Solar Cells 334

10.2.1 Characteristics of an HTM and Interaction with Perovskite 334

10.2.2 Nature of HTM: Organometallic, Inorganic, and Organic (Small Molecules and Polymers) 336

10.2.3 Doping of Hole-Transporting Materials in PSCs 337

10.3 Dopant-Free Organic HTMs for Perovskite Solar Cells 340

10.3.1 Dopant-Free Organic Polymer As HTM 340

10.3.2 Dopant-Free Small Molecules as HTM 340

10.3.2.1 Triarylamine-Based HTM 340

10.3.2.2 Carbazole-Based HTMs 348

10.3.2.3 Thiophene-Based HTMs 349

10.3.2.4 Acene-Based HTMs 350

10.3.2.5 Triazatruxene-Based HTMs 350

10.3.2.6 Tetrathiafulvalene-Based HTM 353

10.3.2.7 Organometallic Compounds and Other Molecules as HTM 353

10.4 Conclusion and Outlook 356

Acknowledgments 356

List of Abbreviations 356

References 359

11 Impact of Monovalent Metal Halides on the Structural and Photophysical Properties of Halide Perovskite 369 
Mojtaba Abdi-Jalebi and M. Ibrahim Dar

11.1 Introduction 369

11.2 Metal Halides 369

11.3 Monovalent Metal Halides 370

11.4 Impact of Monovalent Metal Halides on the Morphological, Structural and Optoelectronic Properties of Perovskites 372

11.5 Impact of Monovalent Metal Halides on Photovoltaic Device Characterizations 378

References 384

12 Charge Carrier Dynamics in Perovskite Solar Cells 389
Mohd T. Khan, Abdullah Almohammedi, Samrana Kazim, and Shahzada Ahmad

12.1 Introduction 389

12.2 Space Charge-Limited Conduction 390

12.3 Immitance Spectroscopy 395

12.3.1 Impedance Spectroscopy 395

12.3.2 Capacitance Spectroscopy 402

12.3.2.1 Capacitance vs. Frequency (C-f ) Measurements 403

12.3.2.2 Capacitance vs. Voltage (C-V) Measurements and Mott-Schottky Analysis 406

12.3.2.3 Thermal Admittance Spectroscopy 409

12.4 Transient Spectroscopy 413

12.4.1 Time-Resolved Microwave Conductivity Measurements 413

12.4.2 Transient Absorption Spectroscopy 417

12.4.3 Time-Resolved Photoluminescence 420

12.5 Conclusion 423

Acknowledgments 424

References 424

13 Printable Mesoscopic Perovskite Solar Cells 431
Daiyu Li, Yaoguang Rong, Yue Hu, Anyi Mei, and Hongwei Han

13.1 Introduction 431

13.2 Device Structures and Working Principles 432

13.3 Progress of Efficiency and Stability 433

13.4 Scaling-up of Printable Mesoscopic Perovskite Solar Cells 438

13.4.1 The Structure of Printable Mesoscopic PSC Modules 438

13.4.2 Solution Deposition Methods of Printable Mesoscopic PSC Modules 440

13.4.3 Encapsulation of Printable Mesoscopic PSCs 442

13.4.4 The Recycling of Printable Mesoscopic PSCs 442

13.4.5 Mass-Production of Printable Mesoscopic PSC Modules 444

13.4.6 Standardizing the Evaluation of PSC Modules 445

13.4.7 Standardizing the Aging Measurements of PSC Modules 447

13.5 Conclusions 449

References 449

14 Upscaling of Perovskite Photovoltaics 453
Dongju Jang, Fu Yang, Lirong Dong, Christoph J. Brabec, and Hans-Joachim Egelhaaf

14.1 Introduction 453

14.2 Techniques for Upscaling 457

14.3 State-of-the-art of Large-Area High-Quality Perovskite Devices 467

14.4 Strategies of Upscaling of Perovskite Devices 471

14.4.1 Strategies for Up-Scaling Perovskite Layers 473

14.4.1.1 Physical Methods 473

14.4.1.2 Chemical Methods 476

14.4.1.3 Post-Growth Treatment 477

14.4.2 Scalable Charge Extraction Layers 478

14.4.3 Scalable Electrodes 479

14.4.3.1 Bottom Electrode 479

14.4.3.2 Top Electrode 481

14.5 Module Layout 481

14.6 Lifetime Aspects 484

14.7 Summary and Outlook 486

References 489

15 Scalable Architectures and Fabrication Processes of Perovskite Solar Cell Technology 497
Ghufran S. Hashmi

15.1 Background 497

15.1.1 Configurations and Device Architectures of Perovskite Solar Cells 498

15.1.2 HTM-Free Device Configurations for Perovskite Solar Cells 499

15.1.3 Perovskites-Based Tandem Solar Cells 500

15.2 Scalable Device Designs of Perovskite Solar Cells 501

15.2.1 Scalable n-i-p Configuration-Based Perovskite Solar Modules 501

15.2.2 Scalable p-i-n Configuration-Based Perovskite Solar Modules 504

15.2.3 Scalable n-i-p and p-i-n Configuration-Based Flexible Perovskite Solar Modules 504

15.2.4 HTM-Free Perovskite Solar Modules 508

15.3 Critical Overview on Scalable Materials Deposition Methods 509

15.4 Nutshell of Long-Term Device Stability of Perovskite Solar Cells and Modules 513

15.5 Conclusive Summary and Futuristic Outlook 514

References 515

16 Multi-Junction Perovskite Solar Cells 521
Suhas Mahesh and Bernard Wenger

16.1 Introduction 521

16.1.1 How Efficient Can Solar Cells Be? 523

16.1.2 How Do Multi-Junction Solar Cells Work? 525

16.1.3 Multi-Junction: Two-Terminal, Three-Terminal, and Four-Terminal Multi-Junctions 525

16.1.4 Why Perovskites for Multi-Junctions? 528

16.2 Perovskite-Silicon Tandems 529

16.2.1 Bandgap Engineering 530

16.2.2 Parasitic Absorption 532

16.2.3 Optical Management 535

16.3 Perovskite-Perovskite Tandems 536

16.4 Characterizing Tandems 538

16.5 Commercialization 539

16.5.1 Reliability 540

16.5.2 Scalability 540

16.5.3 Cost 541

16.6 Outlook 542

References 543

Index 549

Authors

Shahzada Ahmad Samrana Kazim Michael Grätzel