+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Automatic Emergency Brake Systems Market - Global Industry Size, Share, Trends, Opportunities and Forecast, 2018-2028

  • PDF Icon

    Report

  • 190 Pages
  • September 2023
  • Region: Global
  • TechSci Research
  • ID: 5880555
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The global Automatic Emergency Brake System (AEBS) market is witnessing substantial growth and transformation within the automotive industry. AEBS, also known as Autonomous Emergency Braking (AEB) or Collision Avoidance System, is an advanced safety technology designed to mitigate or prevent collisions by autonomously applying the brakes when a potential collision is detected. This technology addresses the critical need for enhanced road safety, reducing the severity of accidents and saving lives. The market's growth is primarily propelled by increasing concerns about road safety and the rising number of accidents caused by human error. AEBS offers a proactive solution by leveraging sensors, cameras, radar, and sometimes even lidar systems to continuously monitor the vehicle's surroundings. When the system identifies an impending collision with another vehicle, pedestrian, or obstacle, it triggers an automatic braking response, significantly reducing the risk of collision impact. Stringent government regulations and safety standards have also played a pivotal role in the proliferation of AEBS. Many regions have recognized the potential of this technology to reduce road accidents and have mandated its inclusion in vehicles. These regulations encourage automakers to integrate AEBS into their vehicles, especially in the context of passenger safety and injury prevention. The increasing consumer awareness of advanced driver assistance systems (ADAS) and their safety benefits has led to a higher demand for AEBS-equipped vehicles. As more consumers prioritize safety features during vehicle purchase decisions, automakers are driven to offer AEBS as a standard or optional feature across a broader range of vehicle models and segments.

Key Market Drivers

Road Safety Enhancement

The primary driver of the AEBS market is the urgent need to enhance road safety and reduce the severity of accidents. AEBS systems autonomously detect potential collisions and initiate emergency braking, significantly mitigating the impact or even preventing accidents altogether. As road accidents continue to be a global concern, AEBS offers an effective solution to minimize the risks associated with human errors, distractions, and unexpected road situations.

Regulatory Mandates and Standards

Government regulatory bodies in various regions are increasingly mandating the adoption of advanced safety technologies like AEBS in vehicles. These regulations are motivated by the potential to save lives and reduce the economic and social costs of accidents. By implementing such regulations, authorities are compelling automakers to integrate AEBS technology into their vehicles, thereby driving its widespread adoption.

Technological Advancements

The advancement of sensor technology, machine learning, artificial intelligence, and data processing capabilities has empowered AEBS systems to become more sophisticated and accurate. Modern AEBS systems use a combination of radar, cameras, lidar, and other sensors to perceive the vehicle's surroundings and detect potential collision risks. The evolution of these technologies enables AEBS to recognize pedestrians, cyclists, other vehicles, and obstacles, providing timely warnings and initiating braking actions.

Consumer Demand for Safety Features

Consumer preferences are shifting towards vehicles equipped with advanced safety features that enhance overall driving security. As awareness of AEBS and its benefits grows, more consumers are seeking vehicles equipped with this technology. Automakers are consequently driven to integrate AEBS as a selling point, especially in premium and safety-conscious vehicle segments.

Reduced Insurance Costs and Incentives

Insurance companies are recognizing the potential of AEBS to mitigate accident risks and severity. As a result, some insurance providers offer reduced premiums or incentives for vehicles equipped with AEBS. This approach encourages consumers to opt for vehicles with advanced safety technologies, contributing to the broader adoption of AEBS systems.

Toward Autonomous Driving

AEBS systems serve as a stepping stone towards more advanced levels of autonomous driving. The integration of AEBS technology lays the groundwork for future autonomous vehicles by refining sensor technology, vehicle-to-vehicle communication, and decision-making algorithms. Automakers recognize AEBS as an integral part of the roadmap toward safer and more autonomous transportation.

Key Market Challenges

Technical Complexity and Reliability

AEBS systems rely on a complex interplay of sensors, cameras, radar, lidar, and sophisticated algorithms to accurately detect potential collisions and initiate emergency braking. Ensuring the reliability of these components under various weather conditions, road surfaces, and driving scenarios is a significant challenge. Robust design, thorough testing, and real-world validation are essential to ensure consistent and dependable system performance.

Pedestrian and Cyclist Detection

Accurately detecting and responding to pedestrians, cyclists, and other vulnerable road users presents a technical challenge. These entities often exhibit unpredictable movements, and distinguishing them from the vehicle's surroundings can be intricate. AEBS systems must have the capability to recognize and respond to these diverse road users to effectively prevent collisions.

False Positives and Driver Acceptance

AEBS systems operate based on complex algorithms that analyze sensor data to determine collision risks. However, false positives-instances where the system detects a potential collision that does not exist-can lead to unnecessary braking actions, potentially frustrating or alarming drivers. Ensuring that false positives are minimized is crucial to gaining driver acceptance and preventing driver disengagement from the technology.

Integration with Other Technologies

Modern vehicles incorporate a multitude of sensors, cameras, and other technologies for various functions, from adaptive cruise control to lane-keeping assistance. Integrating AEBS seamlessly with these technologies and ensuring their coordinated response to potential collision scenarios can be challenging. A cohesive and harmonized approach to integration is essential to prevent conflicts and optimize system performance.

Harmonization of Regulatory Standards

Different regions and countries have varying regulations and standards for vehicle safety technologies, including AEBS. Achieving global harmonization of these standards is challenging, leading to complexities for automakers who need to design vehicles that comply with diverse regulatory frameworks. Harmonization would promote consistency and facilitate global AEBS adoption.

Human-Machine Interaction

AEBS systems interact closely with the driver, especially in situations where emergency braking is initiated. Ensuring that the system communicates its actions clearly to the driver, provides timely warnings, and allows the driver to regain control when necessary is a challenge. Clear and intuitive human-machine interaction is vital to prevent confusion or overreliance on technology.

Cost and Affordability

Developing and implementing AEBS systems involves substantial costs related to research, development, sensor technology, software, and integration. While AEBS offers significant safety benefits, managing these costs to ensure affordability for both automakers and consumers is a challenge. Striking a balance between safety enhancements and cost considerations is crucial.

Key Market Trends

Advancements in Sensor Technology

AEBS relies on sensor technology such as radar, cameras, lidar, and ultrasonic sensors to perceive the vehicle's surroundings and detect potential collision risks. The trend of continuous improvement in sensor technology is making AEBS systems more accurate and reliable. Sensors with higher resolution, extended range, and better object recognition capabilities contribute to the system's ability to accurately detect and assess potential collision scenarios.

Integration with Advanced Driver Assistance Systems (ADAS)

AEBS is often integrated with other ADAS features, such as adaptive cruise control, lane departure warning, and pedestrian detection. This integration creates comprehensive safety packages that work together to prevent accidents and enhance overall driving safety. The trend toward offering holistic ADAS packages underscores the industry's commitment to providing a multi-layered safety net for drivers.

Pedestrian and Cyclist Detection Focus

As road safety concerns expand to include vulnerable road users such as pedestrians and cyclists, AEBS systems are evolving to better detect and respond to these entities. The trend involves enhancing algorithms and sensor technologies to accurately recognize and predict the movements of pedestrians and cyclists, especially in complex urban environments.

Machine Learning and AI Integration

Machine learning and artificial intelligence are being increasingly incorporated into AEBS systems to improve their decision-making capabilities. These technologies enable the system to learn from real-world data, adapt to diverse driving scenarios, and make more precise predictions about potential collisions. The trend toward AI integration enhances the system's ability to differentiate between actual threats and false positives.

Partial to Full Autonomous Driving Pathway

AEBS serves as a foundational technology on the pathway towards more advanced levels of autonomous driving. The trend is towards integrating AEBS technology into the broader autonomous driving ecosystem. AEBS systems refine sensor technology, object recognition, and vehicle-to-vehicle communication, contributing to the development of fully autonomous vehicles.

Regulatory Mandates and Standardization

The global trend towards stricter safety regulations and standards is propelling the adoption of AEBS technology. Regulatory bodies are recognizing the potential of AEBS to reduce accidents and injuries, leading to mandates for its inclusion in vehicles. Additionally, efforts to harmonize global safety standards contribute to standardization in AEBS technology across different regions.

Segmental Insights

Vehicle Type Insights

Passenger cars have a higher market share of the global Automatic Emergency Brake System (AEBS) adoption compared to commercial vehicles. This discrepancy can be attributed to several factors that differentiate the two segments. Passenger cars encompass a broader consumer base, including individual drivers, families, and commuters. The emphasis on safety and comfort is often more pronounced in the passenger car segment due to the diverse range of consumers it caters to. As AEBS technology significantly enhances safety by mitigating collision risks, automakers are more inclined to integrate it into passenger cars to meet the safety expectations of consumers. Moreover, passenger cars are typically used for daily commuting and personal transportation, making their safety features more relevant to individual consumers. AEBS, which helps prevent or mitigate accidents caused by human errors, distractions, or sudden obstacles, aligns with the preferences of passengers looking for enhanced safety measures in their vehicles. Commercial vehicles, on the other hand, include a wide range of vehicles such as trucks, buses, and vans used for transporting goods or passengers. While safety remains important in commercial vehicles, the priorities of this segment may lean more towards factors like cargo capacity, fuel efficiency, and overall cost-effectiveness. Additionally, the integration of advanced safety technologies like AEBS might be influenced by different regulations and requirements that apply to commercial vehicles.

Sensor Type Insights

Radar sensors have the maximum global market share in the Automatic Emergency Braking System (AEBS) segment. This preference can be attributed to several factors that make radar sensors a popular choice for collision detection and avoidance in AEBS technology. Radar sensors excel in their ability to accurately detect objects and obstacles across various weather conditions, including rain, fog, and low light. Their capability to measure the distance, speed, and relative motion of surrounding objects makes them well-suited for collision avoidance applications. Radar sensors emit radio waves that bounce off objects, allowing the system to create a detailed map of the vehicle's surroundings, enabling reliable detection of both moving and stationary objects. Moreover, radar sensors are effective in identifying objects at longer distances compared to other sensor types. This extended range provides AEBS systems with a longer reaction time, enabling them to detect potential collision risks earlier and initiate braking actions in a timely manner. This early detection is crucial for improving safety and minimizing the severity of collisions.

Regional Insights

North America holds the largest share of the global automatic emergency braking system market. The region's dominance can be attributed to the stringent safety norms and regulations implemented by governments, promoting the incorporation of advanced safety features in vehicles. North America has a thriving automobile industry, with a significant presence of major car manufacturers. These manufacturers are increasingly integrating automatic emergency braking systems into their vehicles to enhance safety and meet consumer demand for technologically advanced features. Moreover, consumer awareness regarding vehicle safety is exceptionally high in this region, which further drives the adoption of automatic emergency braking systems. The infrastructure in North America supports the use and testing of advanced vehicle safety technologies, facilitating their more widespread implementation. In conclusion, regulatory policies, automobile industry trends, and high consumer awareness collectively contribute to North America’s leading position in the global automatic emergency braking system market.

Key Market Players

  • Valeo SA
  • Aisin Seiki Co. Ltd
  • Robert Bosch GmbH
  • ZF Friedrichshafen AG
  • Autoliv Inc.
  • Delphi Automotive PLC
  • Continental AG
  • Denso Corporation

Report Scope:

In this report, the Global Automatic Emergency Brake System Market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:

Global Automatic Emergency Brake System Market, By Vehicle Type:

  • Passenger Cars
  • Commercial Vehicles

Global Automatic Emergency Brake System Market, By Sensor Type:

  • Radar
  • Lidar
  • Camera

Global Automatic Emergency Brake System Market, By Technology:

  • Forward collision warning
  • Dynamic brake support
  • Crash imminent braking.

Global Automatic Emergency Brake System Market, By Region:

  • Asia-Pacific
  • Europe & CIS
  • North America
  • South America
  • Middle East & Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automatic Emergency Brake System Market.

Available Customizations:

Global Automatic Emergency Brake System market report with the given market data, the publisher offers customizations according to a company's specific needs.


This product will be delivered within 1-3 business days.

Table of Contents

1. Introduction
1.1. Product Overview
1.2. Key Highlights of the Report
1.3. Market Coverage
1.4. Market Segments Covered
1.5. Research Tenure Considered
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Market Overview
3.2. Market Forecast
3.3. Key Regions
3.4. Key Segments
4. Impact of COVID-19 on Global Automatic Emergency Brake Systems Market
5. Global Automatic Emergency Brake Systems Market Outlook
5.1. Market Size & Forecast
5.1.1. By Volume & Value
5.2. Market Share & Forecast
5.2.1. By Vehicle Type Market Share Analysis (Passenger Cars, and Commercial Vehicles)
5.2.2. By Sensor Type Market Share Analysis (Radar, Lidar, Camera)
5.2.3. By Technology Type Market Share Analysis (Forward collision warning, Dynamic brake support and crash imminent braking)
5.2.4. By Regional Market Share Analysis
5.2.4.1. Asia-Pacific Market Share Analysis
5.2.4.2. Europe & CIS Market Share Analysis
5.2.4.3. North America Market Share Analysis
5.2.4.4. South America Market Share Analysis
5.2.4.5. Middle East & Africa Market Share Analysis
5.2.5. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2022)
5.3. Global Automatic Emergency Brake Systems Market Mapping & Opportunity Assessment
5.3.1. By Vehicle Type Market Mapping & Opportunity Assessment
5.3.2. By Sensor Type Market Mapping & Opportunity Assessment
5.3.3. By Technology Type Market Mapping & Opportunity Assessment
5.3.4. By Regional Market Mapping & Opportunity Assessment
6. Asia-Pacific Automatic Emergency Brake Systems Market Outlook
6.1. Market Size & Forecast
6.1.1. By Volume & Value
6.2. Market Share & Forecast
6.2.1. By Vehicle Type Market Share Analysis
6.2.2. By Sensor Type Market Share Analysis
6.2.3. By Technology Type Market Share Analysis
6.2.4. By Country Market Share Analysis
6.2.4.1. China Market Share Analysis
6.2.4.2. India Market Share Analysis
6.2.4.3. Japan Market Share Analysis
6.2.4.4. Indonesia Market Share Analysis
6.2.4.5. Thailand Market Share Analysis
6.2.4.6. South Korea Market Share Analysis
6.2.4.7. Australia Market Share Analysis
6.2.4.8. Rest of Asia-Pacific Market Share Analysis
6.3. Asia-Pacific: Country Analysis
6.3.1. China Automatic Emergency Brake Systems Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Volume & Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Vehicle Type Market Share Analysis
6.3.1.2.2. By Sensor Type Market Share Analysis
6.3.1.2.3. By Technology Type Market Share Analysis
6.3.2. India Automatic Emergency Brake Systems Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Volume & Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Vehicle Type Market Share Analysis
6.3.2.2.2. By Sensor Type Market Share Analysis
6.3.2.2.3. By Technology Type Market Share Analysis
6.3.3. Japan Automatic Emergency Brake Systems Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Volume & Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Vehicle Type Market Share Analysis
6.3.3.2.2. By Sensor Type Market Share Analysis
6.3.3.2.3. By Technology Type Market Share Analysis
6.3.4. Indonesia Automatic Emergency Brake Systems Market Outlook
6.3.4.1. Market Size & Forecast
6.3.4.1.1. By Volume & Value
6.3.4.2. Market Share & Forecast
6.3.4.2.1. By Vehicle Type Market Share Analysis
6.3.4.2.2. By Sensor Type Market Share Analysis
6.3.4.2.3. By Technology Type Market Share Analysis
6.3.5. Thailand Automatic Emergency Brake Systems Market Outlook
6.3.5.1. Market Size & Forecast
6.3.5.1.1. By Volume & Value
6.3.5.2. Market Share & Forecast
6.3.5.2.1. By Vehicle Type Market Share Analysis
6.3.5.2.2. By Sensor Type Market Share Analysis
6.3.5.2.3. By Technology Type Market Share Analysis
6.3.6. South Korea Automatic Emergency Brake Systems Market Outlook
6.3.6.1. Market Size & Forecast
6.3.6.1.1. By Volume & Value
6.3.6.2. Market Share & Forecast
6.3.6.2.1. By Vehicle Type Market Share Analysis
6.3.6.2.2. By Sensor Type Market Share Analysis
6.3.6.2.3. By Technology Type Market Share Analysis
6.3.7. Australia Automatic Emergency Brake Systems Market Outlook
6.3.7.1. Market Size & Forecast
6.3.7.1.1. By Volume & Value
6.3.7.2. Market Share & Forecast
6.3.7.2.1. By Vehicle Type Market Share Analysis
6.3.7.2.2. By Sensor Type Market Share Analysis
6.3.7.2.3. By Technology Type Market Share Analysis
7. Europe & CIS Automatic Emergency Brake Systems Market Outlook
7.1. Market Size & Forecast
7.1.1. By Volume & Value
7.2. Market Share & Forecast
7.2.1. By Vehicle Type Market Share Analysis
7.2.2. By Sensor Type Market Share Analysis
7.2.3. By Technology Type Market Share Analysis
7.2.4. By Country Market Share Analysis
7.2.4.1. Germany Market Share Analysis
7.2.4.2. Spain Market Share Analysis
7.2.4.3. France Market Share Analysis
7.2.4.4. Russia Market Share Analysis
7.2.4.5. Italy Market Share Analysis
7.2.4.6. United Kingdom Market Share Analysis
7.2.4.7. Belgium Market Share Analysis
7.2.4.8. Rest of Europe & CIS Market Share Analysis
7.3. Europe & CIS: Country Analysis
7.3.1. Germany Automatic Emergency Brake Systems Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Volume & Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Vehicle Type Market Share Analysis
7.3.1.2.2. By Sensor Type Market Share Analysis
7.3.1.2.3. By Technology Type Market Share Analysis
7.3.2. Spain Automatic Emergency Brake Systems Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Volume & Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Vehicle Type Market Share Analysis
7.3.2.2.2. By Sensor Type Market Share Analysis
7.3.2.2.3. By Technology Type Market Share Analysis
7.3.3. France Automatic Emergency Brake Systems Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Volume & Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Vehicle Type Market Share Analysis
7.3.3.2.2. By Sensor Type Market Share Analysis
7.3.3.2.3. By Technology Type Market Share Analysis
7.3.4. Russia Automatic Emergency Brake Systems Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Volume & Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Vehicle Type Market Share Analysis
7.3.4.2.2. By Sensor Type Market Share Analysis
7.3.4.2.3. By Technology Type Market Share Analysis
7.3.5. Italy Automatic Emergency Brake Systems Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Volume & Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Vehicle Type Market Share Analysis
7.3.5.2.2. By Sensor Type Market Share Analysis
7.3.5.2.3. By Technology Type Market Share Analysis
7.3.6. United Kingdom Automatic Emergency Brake Systems Market Outlook
7.3.6.1. Market Size & Forecast
7.3.6.1.1. By Volume & Value
7.3.6.2. Market Share & Forecast
7.3.6.2.1. By Vehicle Type Market Share Analysis
7.3.6.2.2. By Sensor Type Market Share Analysis
7.3.6.2.3. By Technology Type Market Share Analysis
7.3.7. Belgium Automatic Emergency Brake Systems Market Outlook
7.3.7.1. Market Size & Forecast
7.3.7.1.1. By Volume & Value
7.3.7.2. Market Share & Forecast
7.3.7.2.1. By Vehicle Type Market Share Analysis
7.3.7.2.2. By Sensor Type Market Share Analysis
7.3.7.2.3. By Technology Type Market Share Analysis
8. North America Automatic Emergency Brake Systems Market Outlook
8.1. Market Size & Forecast
8.1.1. By Volume & Value
8.2. Market Share & Forecast
8.2.1. By Vehicle Type Market Share Analysis
8.2.2. By Sensor Type Market Share Analysis
8.2.3. By Technology Type Market Share Analysis
8.2.4. By Country Market Share Analysis
8.2.4.1. United States Market Share Analysis
8.2.4.2. Canada Market Share Analysis
8.2.4.3. Mexico Market Share Analysis
8.3. North America: Country Analysis
8.3.1. United States Automatic Emergency Brake Systems Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Volume & Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Vehicle Type Market Share Analysis
8.3.1.2.2. By Sensor Type Market Share Analysis
8.3.1.2.3. By Technology Type Market Share Analysis
8.3.2. Mexico Automatic Emergency Brake Systems Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Volume & Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Vehicle Type Market Share Analysis
8.3.2.2.2. By Sensor Type Market Share Analysis
8.3.2.2.3. By Technology Type Market Share Analysis
8.3.3. Canada Automatic Emergency Brake Systems Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Volume & Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Vehicle Type Market Share Analysis
8.3.3.2.2. By Sensor Type Market Share Analysis
8.3.3.2.3. By Technology Type Market Share Analysis
9. South America Automatic Emergency Brake Systems Market Outlook
9.1. Market Size & Forecast
9.1.1. By Volume & Value
9.2. Market Share & Forecast
9.2.1. By Vehicle Type Market Share Analysis
9.2.2. By Sensor Type Market Share Analysis
9.2.3. By Technology Type Market Share Analysis
9.2.4. By Country Market Share Analysis
9.2.4.1. Brazil Market Share Analysis
9.2.4.2. Argentina Market Share Analysis
9.2.4.3. Colombia Market Share Analysis
9.2.4.4. Rest of South America Market Share Analysis
9.3. South America: Country Analysis
9.3.1. Brazil Automatic Emergency Brake Systems Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Volume & Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Vehicle Type Market Share Analysis
9.3.1.2.2. By Sensor Type Market Share Analysis
9.3.1.2.3. By Technology Type Market Share Analysis
9.3.2. Colombia Automatic Emergency Brake Systems Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Volume & Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Vehicle Type Market Share Analysis
9.3.2.2.2. By Sensor Type Market Share Analysis
9.3.2.2.3. By Technology Type Market Share Analysis
9.3.3. Argentina Automatic Emergency Brake Systems Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Volume & Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Vehicle Type Market Share Analysis
9.3.3.2.2. By Sensor Type Market Share Analysis
9.3.3.2.3. By Technology Type Market Share Analysis
10. Middle East & Africa Automatic Emergency Brake Systems Market Outlook
10.1. Market Size & Forecast
10.1.1. By Volume & Value
10.2. Market Share & Forecast
10.2.1. By Vehicle Type Market Share Analysis
10.2.2. By Sensor Type Market Share Analysis
10.2.3. By Technology Type Market Share Analysis
10.2.4. By Country Market Share Analysis
10.2.4.1. Turkey Market Share Analysis
10.2.4.2. Iran Market Share Analysis
10.2.4.3. Saudi Arabia Market Share Analysis
10.2.4.4. UAE Market Share Analysis
10.2.4.5. Rest of Middle East & Africa Market Share Analysis
10.3. Middle East & Africa: Country Analysis
10.3.1. Turkey Automatic Emergency Brake Systems Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Volume & Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Vehicle Type Market Share Analysis
10.3.1.2.2. By Sensor Type Market Share Analysis
10.3.1.2.3. By Technology Type Market Share Analysis
10.3.2. Iran Automatic Emergency Brake Systems Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Volume & Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Vehicle Type Market Share Analysis
10.3.2.2.2. By Sensor Type Market Share Analysis
10.3.2.2.3. By Technology Type Market Share Analysis
10.3.3. Saudi Arabia Automatic Emergency Brake Systems Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Volume & Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Vehicle Type Market Share Analysis
10.3.3.2.2. By Sensor Type Market Share Analysis
10.3.3.2.3. By Technology Type Market Share Analysis
10.3.4. UAE Automatic Emergency Brake Systems Market Outlook
10.3.4.1. Market Size & Forecast
10.3.4.1.1. By Volume & Value
10.3.4.2. Market Share & Forecast
10.3.4.2.1. By Vehicle Type Market Share Analysis
10.3.4.2.2. By Sensor Type Market Share Analysis
10.3.4.2.3. By Technology Type Market Share Analysis
11. SWOT Analysis
11.1. Strength
11.2. Weakness
11.3. Opportunities
11.4. Threats
12. Market Dynamics
12.1. Market Drivers
12.2. Market Challenges
13. Market Trends and Developments
14. Competitive Landscape
14.1. Company Profiles (Up to 10 Major Companies)
14.1.1. Valeo SA
14.1.1.1. Company Details
14.1.1.2. Key Product Offered
14.1.1.3. Financials (As Per Availability)
14.1.1.4. Recent Developments
14.1.1.5. Key Management Personnel
14.1.2. Aisin Seiki Co. Ltd
14.1.2.1. Company Details
14.1.2.2. Key Product Offered
14.1.2.3. Financials (As Per Availability)
14.1.2.4. Recent Developments
14.1.2.5. Key Management Personnel
14.1.3. Robert Bosch GmbH
14.1.3.1. Company Details
14.1.3.2. Key Product Offered
14.1.3.3. Financials (As Per Availability)
14.1.3.4. Recent Developments
14.1.3.5. Key Management Personnel
14.1.4. ZF Friedrichshafen AG
14.1.4.1. Company Details
14.1.4.2. Key Product Offered
14.1.4.3. Financials (As Per Availability)
14.1.4.4. Recent Developments
14.1.4.5. Key Management Personnel
14.1.5. Autoliv Inc.
14.1.5.1. Company Details
14.1.5.2. Key Product Offered
14.1.5.3. Financials (As Per Availability)
14.1.5.4. Recent Developments
14.1.5.5. Key Management Personnel
14.1.6. Delphi Automotive PLC
14.1.6.1. Company Details
14.1.6.2. Key Product Offered
14.1.6.3. Financials (As Per Availability)
14.1.6.4. Recent Developments
14.1.6.5. Key Management Personnel
14.1.7. Continental AG
14.1.7.1. Company Details
14.1.7.2. Key Product Offered
14.1.7.3. Financials (As Per Availability)
14.1.7.4. Recent Developments
14.1.7.5. Key Management Personnel
14.1.8. Denso Corporation
14.1.8.1. Company Details
14.1.8.2. Key Product Offered
14.1.8.3. Financials (As Per Availability)
14.1.8.4. Recent Developments
14.1.8.5. Key Management Personnel
15. Strategic Recommendations
15.1. Key Focus Areas
15.1.1. Target Regions & Countries
15.1.2. Target Vehicle Type
15.1.3. Target Technology Type
16. About the Publisher & Disclaimer

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • Valeo SA
  • Aisin Seiki Co. Ltd
  • Robert Bosch GmbH
  • ZF Friedrichshafen AG
  • Autoliv Inc.
  • Delphi Automotive PLC
  • Continental AG
  • Denso Corporation

Table Information