+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

The Global Quantum Technology Market 2026-2046

  • PDF Icon

    Report

  • 708 Pages
  • October 2025
  • Region: Global
  • Future Markets, Inc
  • ID: 5886377

The global quantum technology market represents one of the most dynamic and strategically important sectors in modern technology, leveraging fundamental quantum physics principles such as superposition, entanglement, and interference to revolutionize computing, communications, sensing, and measurement capabilities.  The first quarter of 2025 witnessed remarkable momentum in quantum technology investments, with over $1.25 billion raised - representing a 125% increase from the first quarter of 2024. This surge demonstrates growing investor confidence as quantum technologies transition from research laboratories to commercial deployment. The market is experiencing steady technological advances that are improving precision, stability, and form factors suitable for commercialization, while economies of scale are steadily reducing costs of quantum components including lasers, vacuum systems, and cryostats.

The addressable market continues expanding as new applications emerge in biomedical imaging, autonomous vehicles, industrial automation, financial services, pharmaceutical drug discovery, and climate modelling. Studies increasingly demonstrate quantum sensors outperforming classical counterparts for applications like magnetometry, while major technology firms, defense agencies, and investors are ramping up investments into quantum start-ups and research initiatives, supporting rapid maturation from exotic science to practical commercial technology over the next decade.

The Global Quantum Technology Market 2026-2046 report is an essential strategic resource for investors, technology developers, corporate strategists, government policymakers, and industry stakeholders seeking to understand and capitalize on the revolutionary quantum technology revolution. This report provides unparalleled market intelligence, technical analysis, competitive landscape assessment, and strategic forecasting across all major quantum technology segments including quantum computing, quantum communications, quantum sensors, quantum chemistry, quantum AI, quantum life sciences, and quantum batteries.

With the quantum technology market experiencing explosive growth understanding market dynamics, technology roadmaps, competitive positioning, and application opportunities has never been more critical.  This report delivers actionable intelligence through rigorous research methodology including extensive literature review of academic publications and industry reports, expert interviews with technology developers and industry leaders, comprehensive data analysis from government databases and commercial sources, competitive SWOT analysis, and detailed company profiling of >330 leading quantum technology organizations worldwide.

Report contents include:

  • Current quantum technology market landscape and key developments
  • Quantum Technologies Investment Landscape (by technology, application, company, and region)
  • Global Government Funding
  • Market developments 2020-2025
  • Challenges for quantum technologies adoption
  • QUANTUM COMPUTING
    • What is quantum computing (operating principle, classical vs quantum computing, technology types, competition from other technologies, quantum algorithms)
    • Hardware (Superconducting Qubits, Trapped Ion Qubits, Silicon Spin Qubits, Topological Qubits, Photonic Qubits, Neutral Atom Qubits, Diamond-Defect Qubits, Quantum Annealers, Architectural Approaches)
    • Software (technology description, QCaaS, market players)
    • Applications & Services (market structure, pharmaceuticals, financial services, supply chain, materials science, quantum chemistry and AI, challenges, competitive landscape, business models)
    • Market challenges and SWOT analysis
    • Quantum computing value chain
    • Markets and applications (pharmaceuticals, chemicals, transportation, financial services)
    • Opportunity analysis
    • Technology roadmap
  • QUANTUM COMMUNICATIONS
    • Technology description, types, and applications
    • Quantum Random Numbers Generators (QRNG)
    • Quantum Key Distribution (QKD)
    • Post-quantum cryptography (PQC)
    • Quantum homomorphic cryptography
    • Quantum Teleportation
    • Quantum Networks
    • Quantum Memory and Quantum Internet
    • Market challenges and market players
    • Opportunity analysis
    • Technology roadmap
  • QUANTUM SENSORS
    • Technology description and Quantum Sensing Principles
    • Atomic Clocks
    • Quantum Magnetic Field Sensors (SQUIDs, OPMs, TMRs, N-V Centers)
    • Quantum Gravimeters
    • Quantum Gyroscopes
    • Quantum Image Sensors
    • Quantum Radar/LIDAR
    • Quantum Chemical Sensors
    • Quantum Radio Frequency Field Sensors
    • Quantum NEM and MEMs
    • Market and technology challenges
    • Opportunity analysis
    • Technology roadmap
  • QUANTUM BATTERIES
    • Technology description, types, applications
    • SWOT analysis, market challenges, market players
    • Opportunity analysis
    • Technology roadmap
  • QUANTUM CHEMISTRY
    • Technology description, applications
    • SWOT analysis, market challenges, market players
    • Opportunity analysis
    • Technology roadmap
  • QUANTUM MATERIALS
    • Superconductors
    • Photonics, Silicon Photonics and Optical Components
    • Nanomaterials
    • Semiconductor Materials for Quantum Devices
    • Rare Earth and Ion-Doped Materials
    • Diamond and Color Center Materials
    • Atomic and Molecular Quantum Materials
    • Cryogenic and Supporting Materials
    • Packaging and Integration Materials
    • Advanced Fabrication Materials
    • Market Analysis and Supply Chain
  • QUANTUM AI
    • Theoretical Foundations and Quantum AI Paradigms
    • Market Structure and Commercial Landscape
    • Applications (drug discovery, financial services, natural language processing, quantum data analysis)
    • Technical Challenges and Limitations
    • Investment, Competitive Dynamics
    • Regulatory and Ethical Considerations
  • QUANTUM LIFE SCIENCES
    • Market Structure and Segmentation
    • Quantum Advantages and Industry Adoption
    • Specialized Quantum Biotech Companies
    • Technical Challenges and Implementation Barriers
    • Market Growth Drivers and Competitive Landscape
  • GLOBAL MARKET ANALYSIS
    • Market map
    • Key industry players (start-ups, tech giants, national initiatives)
    • Global market revenues 2018-2046 (quantum computing, quantum sensors, QKD systems, quantum AI, quantum life sciences, quantum materials)
  • The report includes comprehensive profiles of 337 leading quantum technology companies worldwide including 01 Communique, 1QBIT, A* Quantum, AbaQus, Absolut System, Adaptive Finance Technologies, ADVA Network Security, Aegiq, Agnostiq, Alea Quantum, Algorithmiq, Airbus, Alpine Quantum Technologies, Alice&Bob, Aliro Quantum, AMD, Anametric, Anyon Systems, Aqarios, Aquark Technologies, Archer Materials, Arclight Quantum, Arctic Instruments, Arqit Quantum, ARQUE Systems, Artificial Brain, Artilux, Atlantic Quantum, Atom Computing, Atom Quantum Labs, Atomionics, Atos Quantum, Baidu, BEIT, Bleximo, BlueFors, BlueQubit, Bohr Quantum Technology, Bosch Quantum Sensing, BosonQ Psi, BTQ Technologies, C12 Quantum Electronics, Cambridge Quantum Computing, CAS Cold Atom, CDimension, Cerca Magnetics, CEW Systems Canada, Chipiron, Chiral Nano, Classiq Technologies, ColibriTD, Commutator Studios, Covesion, Crypta Labs, CryptoNext Security, Crypto Quantique, Crypto4A Technologies, Crystal Quantum Computing, CUBIQ, D-Wave Quantum, Delft Circuits, Delft Networks, Dirac, Diraq, Delta g, Duality Quantum Photonics, EeroQ, eleQtron, Element Six, Elyah, Entropica Labs, Entrust, Envieta Systems, Ephos, Equal1, EuQlid, Groove Quantum, EvolutionQ, Exail Quantum Sensors, EYL, First Quantum, Fujitsu, Genesis Quantum Technology, GenMat, Good Chemistry, Google Quantum AI, g2-Zero, Haiqu, Hefei Wanzheng Quantum Technology, High Q Technologies, Horizon Quantum Computing, HQS Quantum Simulations, HRL, Huayi Quantum, Hub Security, IBM, Icarus Quantum, Icosa Computing, ID Quantique, InfinityQ, Infineon Technologies, InfiniQuant, Infleqtion, Intel, IonQ, ISARA Corporation, IQM Quantum Computers, JiJ, JoS QUANTUM, KEEQuant, KETS Quantum Security, Ki3 Photonics, Kipu Quantum, Kiutra, and more......

Purchasers will receive the following:

  • PDF report. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

Table of Contents

1        EXECUTIVE SUMMARY
1.1     The Quantum Technology Market in 2025: Surge in Investment
1.2     First and second quantum revolutions
1.3     Current quantum technology market landscape
1.3.1   Key developments
1.4     Quantum Technologies Investment Landscape
1.4.1   Total market investments 2012-2025
1.4.2   By technology
1.4.3   By application
1.4.4   By company
1.4.5   By region
1.4.5.1 The Quantum Market in North America
1.4.5.2 The Quantum Market in Asia
1.4.5.3 The Quantum Market in Europe
1.5     Global Government Funding
1.6     Market developments 2020-2025
1.7     Challenges for quantum technologies adoption

2       QUANTUM COMPUTING
2.1     What is quantum computing?
2.1.1   Operating principle
2.1.2   Classical vs quantum computing
2.1.3   Quantum computing technology
2.1.3.1 Quantum emulators
2.1.3.2 Quantum inspired computing
2.1.3.3 Quantum annealing computers
2.1.3.4 Quantum simulators
2.1.3.5 Digital quantum computers
2.1.3.6 Continuous variables quantum computers
2.1.3.7 Measurement Based Quantum Computing (MBQC)
2.1.3.8 Topological quantum computing
2.1.3.9 Quantum Accelerator
2.1.4   Competition from other technologies
2.1.5   Quantum algorithms
2.1.5.1 Quantum Software Stack
2.1.5.2 Quantum Machine Learning
2.1.5.3 Quantum Simulation
2.1.5.4 Quantum Optimization
2.1.5.5 Quantum Cryptography
2.1.5.5.1           Quantum Key Distribution (QKD)
2.1.5.5.2           Post-Quantum Cryptography
2.2     Hardware
2.2.1   Qubit Technologies
2.2.1.1 Superconducting Qubits
2.2.1.1.1           Technology description
2.2.1.1.2           Materials
2.2.1.1.3           Market players
2.2.1.1.4           Swot analysis
2.2.1.2 Trapped Ion Qubits
2.2.1.2.1           Technology description
2.2.1.2.2           Materials
2.2.1.2.2.1      Integrating optical components
2.2.1.2.2.2      Incorporating high-quality mirrors and optical cavities
2.2.1.2.2.3      Engineering the vacuum packaging and encapsulation
2.2.1.2.2.4      Removal of waste heat
2.2.1.2.3           Market players
2.2.1.2.4           Swot analysis
2.2.1.3 Silicon Spin Qubits
2.2.1.3.1           Technology description
2.2.1.3.2           Quantum dots
2.2.1.3.3           Market players
2.2.1.3.4           SWOT analysis
2.2.1.4 Topological Qubits
2.2.1.4.1           Technology description
2.2.1.4.1.1      Cryogenic cooling
2.2.1.4.2           Market players
2.2.1.4.3           SWOT analysis
2.2.1.5 Photonic Qubits
2.2.1.5.1           Technology description
2.2.1.5.2           Market players
2.2.1.5.3           Swot analysis
2.2.1.6 Neutral atom (cold atom) qubits
2.2.1.6.1           Technology description
2.2.1.6.2           Market players
2.2.1.6.3           Swot analysis
2.2.1.7 Diamond-defect qubits
2.2.1.7.1           Technology description
2.2.1.7.2           SWOT analysis
2.2.1.7.3           Market players
2.2.1.8 Quantum annealers
2.2.1.8.1           Technology description
2.2.1.8.2           SWOT analysis
2.2.1.8.3           Market players
2.2.2   Architectural Approaches
2.3     Software
2.3.1   Technology description
2.3.2   Cloud-based services- QCaaS (Quantum Computing as a Service).
2.3.3   Market players
2.4     Applications & Services
2.4.1   Overview
2.4.2   Market Structure and Segmentation
2.4.3   Applications
2.4.3.1 Pharmaceuticals and Drug Discovery
2.4.3.2 Financial Services
2.4.3.3 Supply Chain and Logistics Optimization
2.4.3.4 Materials Science and Chemistry
2.4.3.5 Quantum Chemistry and Artificial Intelligence
2.4.4   Challenges and Market Constraints
2.4.5   Competitive Landscape
2.4.6   Business Models
2.5     Market challenges
2.6     SWOT analysis
2.7     Quantum computing value chain
2.8     Markets and applications for quantum computing
2.8.1   Pharmaceuticals
2.8.1.1 Market overview
2.8.1.1.1 Drug discovery
2.8.1.1.2 Diagnostics
2.8.1.1.3 Molecular simulations
2.8.1.1.4 Genomics
2.8.1.1.5 Proteins and RNA folding
2.8.1.2 Market players
2.8.2   Chemicals
2.8.2.1 Market overview
2.8.2.2 Market players
2.8.3   Transportation
2.8.3.1 Market overview
2.8.3.2 Market players
2.8.4   Financial services
2.8.4.1 Market overview
2.8.4.2 Market players
2.9     Opportunity analysis
2.10    Technology roadmap

3       QUANTUM COMMUNICATIONS
3.1     Technology description
3.2     Types
3.3     Applications
3.4     Quantum Random Numbers Generators (QRNG)
3.4.1   Overview
3.4.2   Applications
3.4.2.1 Encryption for Data Centers
3.4.2.2 Consumer Electronics
3.4.2.3 Automotive/Connected Vehicle
3.4.2.4 Gambling and Gaming
3.4.2.5 Monte Carlo Simulations
3.4.3   Advantages
3.4.4   Principle of Operation of Optical QRNG Technology
3.4.5   Non-optical approaches to QRNG technology
3.4.6   SWOT Analysis
3.5     Quantum Key Distribution (QKD)
3.5.1   Overview
3.5.2   Asymmetric and Symmetric Keys
3.5.3   Principle behind QKD
3.5.4   Why is QKD More Secure Than Other Key Exchange Mechanisms?
3.5.5   Discrete Variable vs. Continuous Variable QKD Protocols
3.5.6   Key Players
3.5.7   Challenges
3.5.8   SWOT Analysis
3.6     Post-quantum cryptography (PQC)
3.6.1   Overview
3.6.2   Security systems integration
3.6.3   PQC standardization
3.6.4   Transitioning cryptographic systems to PQC
3.6.5   Market players
3.6.6   SWOT Analysis
3.7     Quantum homomorphic cryptography
3.8     Quantum Teleportation
3.9     Quantum Networks
3.9.1   Overview
3.9.2   Advantages
3.9.3   Role of Trusted Nodes and Trusted Relays
3.9.4   Entanglement Swapping and Optical Switches
3.9.5   Multiplexing quantum signals with classical channels in the O-band
3.9.5.1 Wavelength-division multiplexing (WDM) and time-division multiplexing (TDM)
3.9.6   Twin-Field Quantum Key Distribution (TF-QKD)
3.9.7   Enabling global-scale quantum communication
3.9.8   Advanced optical fibers and interconnects
3.9.9   Photodetectors in quantum networks
3.9.9.1 Avalanche photodetectors (APDs)
3.9.9.2 Single-photon avalanche diodes (SPADs)
3.9.9.3 Silicon Photomultipliers (SiPMs)
3.9.10  Cryostats
3.9.10.1            Cryostat architectures
3.9.11  Infrastructure requirements
3.9.12  Global activity
3.9.12.1            China
3.9.12.2            Europe
3.9.12.3            The Netherlands
3.9.12.4            The United Kingdom
3.9.12.5            US
3.9.12.6            Japan
3.9.13  SWOT analysis
3.10    Quantum Memory
3.11    Quantum Internet
3.12    Market challenges
3.13    Market players
3.14    Opportunity analysis
3.15    Technology roadmap
4       QUANTUM SENSORS
4.1     Technology description
4.1.1   Quantum Sensing Principles
4.1.2   SWOT analysis
4.1.3   Atomic Clocks
4.1.3.1 High frequency oscillators
4.1.3.1.1           Emerging oscillators
4.1.3.2 Caesium atoms
4.1.3.3 Self-calibration
4.1.3.4 Optical atomic clocks
4.1.3.4.1           Chip-scale optical clocks
4.1.3.5 Companies
4.1.3.6 SWOT analysis
4.1.4   Quantum Magnetic Field Sensors
4.1.4.1 Introduction
4.1.4.2 Motivation for use
4.1.4.3 Market opportunity
4.1.4.4 Superconducting Quantum Interference Devices (Squids)
4.1.4.4.1           Applications
4.1.4.4.2           Key players
4.1.4.4.3           SWOT analysis
4.1.4.5 Optically Pumped Magnetometers (OPMs)
4.1.4.5.1           Applications
4.1.4.5.2           Key players
4.1.4.5.3           SWOT analysis
4.1.4.6 Tunneling Magneto Resistance Sensors (TMRs)
4.1.4.6.1           Applications
4.1.4.6.2           Key players
4.1.4.6.3           SWOT analysis
4.1.4.7 Nitrogen Vacancy Centers (N-V Centers)
4.1.4.7.1           Applications
4.1.4.7.2           Key players
4.1.4.7.3           SWOT analysis
4.1.5   Quantum Gravimeters
4.1.5.1 Technology description
4.1.5.2 Applications
4.1.5.3 Key players
4.1.5.4 SWOT analysis
4.1.6   Quantum Gyroscopes
4.1.6.1 Technology description
4.1.6.1.1           Inertial Measurement Units (IMUs)
4.1.6.1.2           Atomic quantum gyroscopes
4.1.6.2 Applications
4.1.6.3 Key players
4.1.6.4 SWOT analysis
4.1.7   Quantum Image Sensors
4.1.7.1 Technology description
4.1.7.2 Applications
4.1.7.3 SWOT analysis
4.1.7.4 Key players
4.1.8   Quantum Radar/LIDAR
4.1.8.1 Technology description
4.1.8.2 Applications
4.1.9   Quantum Chemical Sensors
4.1.9.1 Technology overview
4.1.9.2 Commercial activities
4.1.10 Quantum Radio Frequency Field Sensors
4.1.10.1            Overview
4.1.10.2            Rydberg Atom Based Electric Field Sensors and Radio Receivers
4.1.10.2.1        Principles
4.1.10.2.2        Commercialization
4.1.10.3            Nitrogen-Vacancy Centre Diamond Electric Field Sensors and Radio Receivers
4.1.10.3.1        Principles
4.1.10.3.2        Applications
4.1.10.4            Market
4.1.11 Quantum NEM and MEMs
4.1.11.1            Technology description
4.2     Market and technology challenges
4.3     Opportunity analysis
4.4     Technology roadmap
5       QUANTUM BATTERIES
5.1     Technology description
5.2     Types
5.3     Applications
5.4     SWOT analysis
5.5     Market challenges
5.6     Market players
5.7     Opportunity analysis
5.8     Technology roadmap
6       QUANTUM CHEMISTRY
6.1     Technology description
6.2     Applications
6.3     SWOT analysis
6.4     Market challenges
6.5     Market players
6.6     Opportunity analysis
6.7     Technology roadmap

7       QUANTUM MATERIALS
7.1     Superconductors
7.1.1   Overview
7.1.2   Types and Properties
7.1.2.1 Emerging Superconductor Materials
7.1.2.1.1           Magnesium Diboride (MgB2)
7.1.2.1.2           Iron Pnictides and Iron-Based Superconductors
7.1.2.1.3           Cuprate Thin Films
7.1.2.2  Superconducting Nanowire Single-Photon Detectors (SNSPDs)
7.1.2.2.1           Material Requirements and Properties
7.1.2.2.2           Device Architecture and Fabrication
7.1.2.2.3           Applications in Quantum Technologies
7.1.2.3  Josephson Junction Materials
7.1.2.3.1           Aluminum Oxide Tunnel Barriers
7.1.2.3.2           Advanced Tunneling Materials
7.1.2.3.3           Barrier Characterization and Quality Control
7.1.2.4  Multilayer Superconductor Structures
7.1.2.4.1           Design and Fabrication Approaches
7.1.2.4.2           Materials Selection and Compatibility
7.1.2.4.3           Applications and Performance Considerations
7.1.2.5  Room-Temperature Superconductor Research
7.1.3    Opportunities
7.2      Photonics, Silicon Photonics and Optical Components
7.2.1    Overview
7.2.2    Types and Properties
7.2.2.1  Integrated Photonic Circuits
7.2.2.1.1           Silicon Nitride Photonics
7.2.2.1.2           Lithium Niobate on Insulator (LNOI)
7.2.2.2  Quantum Dot Materials
7.2.2.2.1           InAs/GaAs Self-Assembled Quantum Dots
7.2.2.2.2           Colloidal Quantum Dots
7.2.2.3  Nonlinear Optical Materials
7.2.2.3.1           Periodically Poled Lithium Niobate (PPLN)
7.2.2.3.2           Periodically Poled Potassium Titanyl Phosphate (PPKTP)
7.2.2.3.3           Beta Barium Borate (BBO) and Other Nonlinear Crystals
7.2.2.4  Optical Fiber Materials
7.2.2.4.1           Single-Mode Fibers for Quantum Communication
7.2.2.4.2           Specialty Fibers for Quantum Applications
7.2.2.5  Waveguide Materials and Fabrication
7.2.2.5.1           Ion-Exchange Waveguides
7.2.2.5.2           Femtosecond Laser Writing
7.2.2.5.3           Polymer Waveguides
7.2.2.6  Anti-Reflection and Optical Coatings
7.2.2.6.1           Design and Materials Selection
7.2.2.6.2           Specialized Coatings for Quantum Applications
7.2.3   Opportunities
7.3     Nanomaterials
7.3.1   Overview
7.3.2   Types and Properties
7.3.2.1 Carbon Nanotubes
7.3.2.1.1           Structure and Properties
7.3.2.1.2           Synthesis and Integration
7.3.2.1.3           Quantum Applications
7.3.2.2 Quantum Dots (Colloidal and Epitaxial)
7.3.2.2.1           Colloidal Quantum Dot Synthesis
7.3.2.2.2           Perovskite Quantum Dots
7.3.2.3 2D Materials
7.3.2.3.1           Transition Metal Dichalcogenides (TMDs)
7.3.2.3.2           Hexagonal Boron Nitride (hBN)
7.3.2.3.3           Graphene and Its Quantum Applications
7.3.2.4 Metamaterials for Quantum Control
7.3.2.4.1           Electromagnetic Metamaterials
7.3.2.4.2           Metasurfaces for Wavefront Engineering
7.3.2.5 Nanoparticles for Quantum Sensing
7.3.2.5.1           Diamond Nanoparticles with NV Centers
7.3.2.5.2           Plasmonic Nanoparticles
7.3.2.5.3           Upconversion Nanoparticles
7.3.2.5.4           Magnetic Nanoparticles for Quantum Sensing
7.3.2.5.5           Quantum Dot-Magnetic Nanoparticle Hybrids
7.3.3    Opportunities
7.4      Semiconductor Materials for Quantum Devices
7.4.1    Overview
7.4.2    Silicon-Based Quantum Materials
7.4.3    III-V Semiconductor Materials
7.4.4    Two-Dimensional Materials
7.4.5    Topological Insulator Materials
7.4.6    Manufacturing Challenges and Purity Requirements
7.5      Rare Earth and Ion-Doped Materials
7.5.1    Overview
7.5.2    Erbium-Doped Materials
7.5.3    Other Rare Earth Ions
7.5.4    Host Crystal Materials
7.5.5    Fabrication and Integration Approaches
7.5.6    Applications in Quantum Networks
7.6      Diamond and Color Center Materials
7.6.1    Overview
7.6.2    Nitrogen-Vacancy Centers
7.6.3    Silicon and Germanium Vacancy Centers
7.6.4    Synthetic Diamond Fabrication
7.6.5    Applications and Commercial Development
7.7      Atomic and Molecular Quantum Materials
7.7.1    Overview
7.7.1.1  Ultra-Cold Atomic Gases
7.7.2    Vapor Cell Technologies
7.7.3    Trapped Ion Materials
7.7.4    Laser and Optical Component Materials
7.8      Cryogenic and Supporting Materials
7.8.1    Overview
7.8.2    Dilution Refrigerator Components
7.8.3    Microwave Components and Control Electronics
7.8.4    Thermal Management Materials
7.8.5    Magnetic Shielding and Superconducting Shielding
7.8.6    Vacuum Technologies and Materials
7.8.7    Vibration Isolation Materials
7.9      Packaging and Integration Materials
7.9.1    Overview
7.9.2    Quantum Chip Packaging Materials
7.9.3    Wire Bonding and Interconnect Materials
7.9.4    Electromagnetic Shielding Materials
7.9.5    Thermal Management and Heat Extraction
7.9.6    Optical Integration Materials
7.10     Advanced Fabrication Materials
7.10.1   Overview
7.10.1.1            Electron Beam Lithography Materials
7.10.2 Atomic Layer Deposition Precursors
7.10.3 Molecular Beam Epitaxy Sources
7.10.4 Etch Chemistries and Cleaning Materials
7.11     Market Analysis and Supply Chain
7.11.1 Supply Chain Structure and Dependencies
7.11.2 Materials Cost Structures and Pricing
7.11.3 Environmental and Sustainability Considerations

8        QUANTUM AI
8.1      Theoretical Foundations and Quantum AI Paradigms
8.2      Market Structure and Commercial Landscape
8.2.1    Hardware
8.2.2    Specialized quantum AI software
8.3      Applications
8.3.1    Drug discovery
8.3.2    Financial services
8.3.3    Natural language processing
8.3.4    Quantum data analysis
8.4      Technical Challenges and Limitations
8.5      Investment
8.6      Competitive Dynamics
8.7      Regulatory and Ethical Considerations
9        QUANTUM LIFE SCIENCES
9.1      Market Structure and Segmentation
9.2      Quantum Advantages
9.3      Industry Adoption
9.4      Specialized Quantum Biotech Companies
9.5      Technical Challenges and Implementation Barriers
9.6      Market Growth Drivers
9.7      Competitive Landscape
10       GLOBAL MARKET ANALYSIS
10.1     Market map
10.2     Key industry players
10.2.1   Start-ups
10.2.2   Tech Giants
10.2.3   National Initiatives
10.3     Global market revenues 2018-2046
10.3.1   Quantum Computing
10.3.2   Quantum Sensors
10.3.3   QKD Systems
10.3.4   Quantum AI
10.3.5   Quantum Life Sciences
10.3.6   Quantum Materials

11       COMPANY PROFILES(337 company profiles)12       RESEARCH METHODOLOGY13       TERMS AND DEFINITIONS14       REFERENCES
LIST OF TABLES
Table 1. First and second quantum revolutions.
Table 2. Quantum Technology investments 2012-2025 (millions USD), total.
Table 3. Major Quantum Technologies Investments 2024-2025.
Table 4. Quantum Technology investments 2012-2025 (millions USD), by technology.
Table 5. Quantum Technology Funding 2022-2025, by company.
Table 6. Quantum Technology investments 2012-2025 (millions USD), by region.
Table 7. Global government initiatives in quantum technologies.
Table 8. Total Investment by Country (Government and Private Combined).
Table 9. Quantum technologies market developments 2020-2025.
Table 10. Challenges for quantum technologies adoption.
Table 11.  Applications for quantum computing
Table 12. Comparison of classical versus quantum computing.
Table 13. Key quantum mechanical phenomena utilized in quantum computing.
Table 14. Types of quantum computers.
Table 15. Comparative analysis of quantum computing with classical computing, quantum-inspired computing, and neuromorphic computing.
Table 16. Different computing paradigms beyond conventional CMOS.
Table 17. Applications of quantum algorithms.
Table 18. QML approaches.
Table 19. Coherence times for different qubit implementations.
Table 20. Superconducting qubit market players.
Table 21. Initialization, manipulation and readout for trapped ion quantum computers.
Table 22. Ion trap market players.
Table 23.  Initialization, manipulation, and readout methods for silicon-spin qubits.
Table 24. Silicon spin qubits market players.
Table 25. Initialization, manipulation and readout of topological qubits.
Table 26. Topological qubits market players.
Table 27. Pros and cons of photon qubits.
Table 28. Comparison of photon polarization and squeezed states.
Table 29. Initialization, manipulation and readout of photonic platform quantum computers.
Table 30. Photonic qubit market players.
Table 31. Initialization, manipulation and readout for neutral-atom quantum computers.
Table 32. Pros and cons of cold atoms quantum computers and simulators
Table 33. Neural atom qubit market players.
Table 34. Initialization, manipulation and readout of Diamond-Defect Spin-Based Computing.
Table 35.  Key materials for developing diamond-defect spin-based quantum computers.
Table 36. Diamond-defect qubits market players.
Table 37. Pros and cons of quantum annealers.
Table 38. Quantum annealers market players.
Table 39. Quantum computing software market players.
Table 40. Market challenges in quantum computing.
Table 41. Quantum computing value chain.
Table 42. Markets and applications for quantum computing.
Table 43. Market players in quantum technologies for pharmaceuticals.
Table 44. Market players in quantum computing for chemicals.
Table 45. Automotive applications of quantum computing,
Table 46. Market players in quantum computing for transportation.
Table 47. Market players in quantum computing for financial services
Table 48. Market opportunities in quantum computing.
Table 49. Main types of quantum communications.
Table 50. Applications in quantum communications.
Table 51. QRNG applications.
Table 52. Key Players Developing QRNG Products.
Table 53. Optical QRNG by company.
Table 54. Market players in post-quantum cryptography.
Table 55. Market challenges in quantum communications.
Table 56. Market players in quantum communications.
Table 57. Market opportunities in quantum communications.
Table 58.  Comparison between classical and quantum sensors.
Table 59. Applications in quantum sensors.
Table 60. Technology approaches for enabling quantum sensing
Table 61. Value proposition for quantum sensors.
Table 62. Key challenges and limitations of quartz crystal clocks vs. atomic clocks.
Table 63.  New modalities being researched to improve the fractional uncertainty of atomic clocks.
Table 64. Companies developing high-precision quantum time measurement
Table 65. Key players in atomic clocks.
Table 66. Comparative analysis of key performance parameters and metrics of magnetic field sensors.
Table 67. Types of magnetic field sensors.
Table 68. Market opportunity for different types of quantum magnetic field sensors.
Table 69. Applications of SQUIDs.
Table 70. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices).
Table 71. Key players in SQUIDs.
Table 72. Applications of optically pumped magnetometers (OPMs).
Table 73. Key players in Optically Pumped Magnetometers (OPMs).
Table 74. Applications for TMR (Tunneling Magnetoresistance) sensors.
Table 75. Market players in TMR (Tunneling Magnetoresistance) sensors.
Table 76. Applications of N-V center magnetic field centers
Table 77. Key players in N-V center magnetic field sensors.
Table 78. Applications of quantum gravimeters
Table 79. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping.
Table 80. Key players in quantum gravimeters.
Table 81. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes.
Table 82. Markets and applications for quantum gyroscopes.
Table 83. Key players in quantum gyroscopes.
Table 84. Types of quantum image sensors and their key features/.
Table 85. Applications of quantum image sensors.
Table 86. Key players in quantum image sensors.
Table 87. Comparison of quantum radar versus conventional radar and lidar technologies.
Table 88. Applications of quantum radar.
Table 89. Value Proposition of Quantum RF Sensors
Table 90. Types of Quantum RF Sensors
Table 91. Markets for Quantum RF Sensors
Table 92. Technology Transition Milestones.
Table 93. Market and technology challenges in quantum sensing.
Table 94. Market opportunities in quantum sensors.
Table 95. Comparison between quantum batteries and other conventional battery types.
Table 96. Types of quantum batteries.
Table 97. Applications of quantum batteries.
Table 98. Market challenges in quantum batteries.
Table 99. Market players in quantum batteries.
Table 100. Market opportunities in quantum batteries.
Table 101. Applications in quantum chemistry and artificial intelligence (AI).
Table 102. Market challenges in quantum chemistry and Artificial Intelligence (AI).
Table 103. Market players in quantum chemistry and AI.
Table 104. Market opportunities in quantum chemistry and AI.
Table 105. Materials in Quantum Technology.
Table 106. Superconductors in quantum technology.
Table 107. Photonics, silicon photonics and optics in quantum technology.
Table 108. Nanomaterials in quantum technology.
Table 109. Quantum AI market structure.
Table 110. Quantum AI applications.
Table 111. Technical challenges in Quantum AI.
Table 112. Pharmaceutical Company Quantum Initiatives.
Table 113. Global Market for Quantum Computing - Hardware, Software & Services (2025-2046) (billions USD).
Table 114. Markets for quantum sensors, by types, 2025-2046 (Millions USD)
Table 115. Markets for QKD systems, 2025-2046 (Millions USD).
Table 116. Global Quantum AI market 2025-2046 (Billions USD).
Table 117. Global Quantum Life Science market 2025-2046 (Billions USD). .
Table 118. Quantum Materials Market 2022-2046 (Billions USD).
LIST OF FIGURES
Figure 1. Quantum computing development timeline.
Figure 2. Example National quantum initiatives and funding timeline.
Figure 3. Quantum computing architectures.
Figure 4. An early design of an IBM 7-qubit chip based on superconducting technology.
Figure 5. Various 2D to 3D chips integration techniques into chiplets.
Figure 6. IBM Q System One quantum computer.
Figure 7. Unconventional computing approaches.
Figure 8. 53-qubit Sycamore processor.
Figure 9. Interior of IBM quantum computing system. The quantum chip is located in the small dark square at center bottom.
Figure 10. Superconducting quantum computer.
Figure 11. Superconducting quantum computer schematic.
Figure 12.  Components and materials used in a superconducting qubit.
Figure 13. SWOT analysis for superconducting quantum computers:.
Figure 14. Ion-trap quantum computer.
Figure 15. Various ways to trap ions.
Figure 16.  Universal Quantum’s shuttling ion architecture in their Penning traps.
Figure 17. SWOT analysis for trapped-ion quantum computing.
Figure 18. CMOS silicon spin qubit.
Figure 19. Silicon quantum dot qubits.
Figure 20. SWOT analysis for silicon spin quantum computers.
Figure 21. SWOT analysis for topological qubits
Figure 22 . SWOT analysis for photonic quantum computers.
Figure 23. Neutral atoms (green dots) arranged in various configurations
Figure 24. SWOT analysis for neutral-atom quantum computers.
Figure 25. NV center components.
Figure 26. SWOT analysis for diamond-defect quantum computers.
Figure 27. D-Wave quantum annealer.
Figure 28. SWOT analysis for quantum annealers.
Figure 29. Quantum software development platforms.
Figure 30. SWOT analysis for quantum computing.
Figure 31. Technology roadmap for quantum computing 2025-2046.
Figure 32. IDQ quantum number generators.
Figure 33. SWOT Analysis of Quantum Random Number Generator Technology.
Figure 34. SWOT Analysis of Quantum Key Distribution Technology.
Figure 35. SWOT Analysis: Post Quantum Cryptography (PQC).
Figure 36. SWOT analysis for networks.
Figure 37. Technology roadmap for quantum communications 2025-2046.
Figure 38. Q.ANT quantum particle sensor.
Figure 39. SWOT analysis for quantum sensors market.
Figure 40. NIST's compact optical clock.
Figure 41. SWOT analysis for atomic clocks.
Figure 42.Principle of SQUID magnetometer.
Figure 43. SWOT analysis for SQUIDS.
Figure 44. SWOT analysis for OPMs
Figure 45. Tunneling magnetoresistance mechanism and TMR ratio formats.
Figure 46. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors.
Figure 47. SWOT analysis for N-V Center Magnetic Field Sensors.
Figure 48. Quantum Gravimeter.
Figure 49. SWOT analysis for Quantum Gravimeters.
Figure 50. SWOT analysis for Quantum Gyroscopes.
Figure 51. SWOT analysis for Quantum image sensing.
Figure 52. Principle of quantum radar.
Figure 53. Illustration of a quantum radar prototype.
Figure 54. Quantum RF Sensors Market Roadmap (2023-2046).
Figure 55. Technology roadmap for quantum sensors 2025-2046.
Figure 56. Schematic of the flow of energy (blue) from a source to a battery made up of multiple cells. (left)
Figure 57. SWOT analysis for quantum batteries.
Figure 58. Technology roadmap for quantum batteries 2025-2046.
Figure 59. SWOT analysis for quantum chemistry and AI.
Figure 60. Technology roadmap for quantum chemistry and AI 2025-2046.
Figure 61. Market map for quantum technologies industry.
Figure 62. Tech Giants quantum technologies activities.
Figure 63. Global market for quantum computing-Hardware, Software & Services, 2025-2046 (billions USD).
Figure 64. Markets for quantum sensors, by types, 2025-2046 (Millions USD).
Figure 65. Markets for QKD systems, 2025-2046 (Millions USD).
Figure 66. Global Quantum AI market 2025-2046 (Billions USD).
Figure 67. Archer-EPFL spin-resonance circuit.
Figure 68.  IBM Q System One quantum computer.
Figure 69. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).
Figure 70.  Intel Tunnel Falls 12-qubit chip.
Figure 71. IonQ's ion trap
Figure 72. 20-qubit quantum computer.
Figure 73. Maybell Big Fridge.
Figure 74. PsiQuantum’s modularized quantum computing system networks.
Figure 75. Quantum Brilliance device
Figure 76. The Ez-Q Engine 2.0 superconducting quantum measurement and control system.
Figure 77. Quobly's processor.
Figure 78. SemiQ first chip prototype.
Figure 79. SpinMagIC quantum sensor.
Figure 80. Toshiba QKD Development Timeline.
Figure 81. Toshiba Quantum Key Distribution technology.

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • 01 Communique
  • 1QBIT
  • A* Quantum
  • AbaQus
  • Absolut System
  • Adaptive Finance Technologies
  • ADVA Network Security
  • Aegiq
  • Agnostiq
  • Alea Quantum
  • Algorithmiq
  • Airbus
  • Alpine Quantum Technologies
  • Alice&Bob, Aliro Quantum
  • AMD
  • Anametric
  • Anyon Systems
  • Aqarios
  • Aquark Technologies
  • Archer Materials
  • Arclight Quantum
  • Arctic Instruments
  • Arqit Quantum
  • ARQUE Systems
  • Artificial Brain
  • Artilux
  • Atlantic Quantum
  • Atom Computing
  • Atom Quantum Labs
  • Atomionics
  • Atos Quantum
  • Baidu
  • BEIT
  • Bleximo
  • BlueFors
  • BlueQubit
  • Bohr Quantum Technology
  • Bosch Quantum Sensing
  • BosonQ Psi
  • BTQ Technologies
  • C12 Quantum Electronics
  • Cambridge Quantum Computing
  • CAS Cold Atom
  • CDimension
  • Cerca Magnetics
  • CEW Systems Canada
  • Chipiron
  • Chiral Nano
  • Classiq Technologies
  • ColibriTD
  • Commutator Studios
  • Covesion
  • Crypta Labs
  • CryptoNext Security
  • Crypto Quantique
  • Crypto4A Technologies
  • Crystal Quantum Computing
  • CUBIQ
  • D-Wave Quantum
  • Delft Circuits
  • Delft Networks
  • Dirac
  • Diraq
  • Delta g
  • Duality Quantum Photonics
  • EeroQ
  • eleQtron
  • Element Six
  • Elyah
  • Entropica Labs
  • Entrust
  • Envieta Systems
  • Ephos
  • Equal1
  • EuQlid
  • Groove Quantum
  • EvolutionQ
  • Exail Quantum Sensors
  • EYL
  • First Quantum
  • Fujitsu
  • Genesis Quantum Technology
  • GenMat
  • Good Chemistry
  • Google Quantum AI
  • g2-Zero
  • Haiqu
  • Hefei Wanzheng Quantum Technology
  • High Q Technologies
  • Horizon Quantum Computing
  • HQS Quantum Simulations
  • HRL
  • Huayi Quantum
  • Hub Security
  • IBM
  • Icarus Quantum
  • Icosa Computing
  • ID Quantique
  • InfinityQ
  • Infineon Technologies
  • InfiniQuant
  • Infleqtion
  • Intel
  • IonQ
  • ISARA Corporation
  • IQM Quantum Computers
  • JiJ
  • JoS QUANTUM
  • KEEQuant
  • KETS Quantum Security
  • Ki3 Photonics
  • Kipu Quantum
  • Kiutra