+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
Sale

Medical Radiation Detection Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2020-2030F

  • PDF Icon

    Report

  • 183 Pages
  • July 2025
  • Region: Global
  • TechSci Research
  • ID: 5895981
UP TO OFF until Jul 31st 2025
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Medical Radiation Detection Market was valued at USD 0.95 Billion in 2024, and is expected to reach USD 1.42 Billion by 2030, rising at a CAGR of 7.18%. Medical radiation detectors play a critical role in monitoring radiation exposure, essential for maintaining safety standards in medical environments. As prolonged radiation exposure increases the risk of severe health conditions, including cancer, there is a growing demand for technologies capable of accurately measuring radiation levels in the body.

The U.S., for instance, is expected to witness approximately 1,958,310 new cancer cases in 2023, averaging about 5,370 cases daily, as reported by the American Cancer Society. Devices such as handheld survey meters (HSM), personal radiation detectors (PRD), radiation portal monitors (RPM), and radiation isotope identification devices (RIID) are vital tools in detecting ionizing radiation. Technological advancements are paving the way for the broader availability of radiation detection tools, including home-use devices like dosimeters that detect gamma rays, a highly dangerous form of external radiation.

Key Market Drivers

Rising Incidence of Cancer

The increasing global burden of cancer is a major factor propelling the growth of the medical radiation detection market. As radiation therapy remains a cornerstone of cancer treatment, the growing number of cancer patients directly correlates with the rising demand for precise radiation detection systems. According to the National Institutes of Health (NIH), around 1,958,310 new cancer cases and 609,820 cancer-related deaths are projected in the U.S. in 2023 alone. This surge in cancer diagnoses is also increasing the use of radiation-based imaging techniques such as CT scans, X-rays, and PET scans, all of which require careful radiation monitoring to protect patient health. Furthermore, with the advancement of personalized medicine, radiation therapy is becoming more targeted, necessitating highly accurate detection systems that ensure optimal dosing while minimizing exposure to surrounding healthy tissues.

Key Market Challenges

Technological Complexity

The advanced nature of modern radiation detection technologies poses a significant adoption challenge, particularly for smaller or under-resourced healthcare facilities. These systems often involve complex operations requiring specialized training and expertise, creating a high barrier to entry. Additionally, the elevated upfront costs associated with procurement, training, and maintenance can deter investment. Integration with existing healthcare IT infrastructures, such as EHRs and PACS, also remains a challenge due to compatibility and data-sharing limitations. Moreover, the ongoing need for software updates and equipment maintenance adds to the operational burden, particularly in resource-limited environments.

Key Market Trends

AI-Powered Radiation Detection

Artificial Intelligence (AI) is transforming the landscape of medical radiation detection by enhancing the accuracy and efficiency of radiation monitoring systems. AI can process extensive datasets to detect subtle patterns and anomalies that might be overlooked by human operators. This results in more precise radiation dosing, contributing to improved treatment outcomes and patient safety. AI systems also support real-time monitoring and issue alerts when radiation exceeds safe thresholds, allowing for immediate corrective actions. By automating data analysis, these systems reduce the workload on healthcare providers, enabling professionals to dedicate more time to patient care and treatment planning.

Key Market Players

  • Thermo Fisher Scientific, Inc.
  • UAB Polimaster Europe.
  • PTW Freiburg GmbH.
  • Sanlar imex services private limited.
  • Mirion Technologies, Inc.
  • MP BIOMEDICALS.
  • SIERRA RADIATION DOSIMETRY SERVICE, INC.
  • IBA Dosimetry GmbH.

Report Scope:

In this report, the Global Medical Radiation Detection Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Medical Radiation Detection Market, By Type:

  • Gas-filled Detector
  • Scintillators

Medical Radiation Detection Market, By Product:

  • Personal Dosimeters
  • Area Process Dosimeters

Medical Radiation Detection Market, By End Use:

  • Hospitals
  • Ambulatory Surgical Centers
  • Diagnostic Imaging Centers
  • Homecare

Medical Radiation Detection Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Medical Radiation Detection Market.

Available Customizations:

With the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report.

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Voice of Customer
5. Global Medical Radiation Detection Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Type (Gas-filled Detector, Scintillators)
5.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
5.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
5.2.4. By Region (North America, Europe, Asia Pacific, South America, Middle East & Africa)
5.2.5. By Company (2024)
5.3. Market Map
5.3.1 By Type
5.3.2 By Product
5.3.3 By End-use
5.3.4 By Region
6. North America Medical Radiation Detection Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Type (Gas-filled Detector, Scintillators)
6.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
6.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
6.2.4. By Country
6.3. North America: Country Analysis
6.3.1. United States Medical Radiation Detection Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Type
6.3.1.2.2. By Product
6.3.1.2.3. By End-use
6.3.2. Canada Medical Radiation Detection Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Type
6.3.2.2.2. By Product
6.3.2.2.3. By End-use
6.3.3. Mexico Medical Radiation Detection Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Type
6.3.3.2.2. By Product
6.3.3.2.3. By End-use
7. Europe Medical Radiation Detection Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Type (Gas-filled Detector, Scintillators)
7.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
7.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
7.2.4. By Country
7.3. Europe: Country Analysis
7.3.1. France Medical Radiation Detection Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Type
7.3.1.2.2. By Product
7.3.1.2.3. By End-use
7.3.2. Germany Medical Radiation Detection Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Type
7.3.2.2.2. By Product
7.3.2.2.3. By End-use
7.3.3. United Kingdom Medical Radiation Detection Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Type
7.3.3.2.2. By Product
7.3.3.2.3. By End-use
7.3.4. Italy Medical Radiation Detection Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Type
7.3.4.2.2. By Product
7.3.4.2.3. By End-use
7.3.5. Spain Medical Radiation Detection Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Type
7.3.5.2.2. By Product
7.3.5.2.3. By End-use
8. Asia-Pacific Medical Radiation Detection Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Type (Gas-filled Detector, Scintillators)
8.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
8.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
8.2.4. By Country
8.3. Asia-Pacific: Country Analysis
8.3.1. China Medical Radiation Detection Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Type
8.3.1.2.2. By Product
8.3.1.2.3. By End-use
8.3.2. India Medical Radiation Detection Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Type
8.3.2.2.2. By Product
8.3.2.2.3. By End-use
8.3.3. Japan Medical Radiation Detection Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Type
8.3.3.2.2. By Product
8.3.3.2.3. By End-use
8.3.4. South Korea Medical Radiation Detection Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Type
8.3.4.2.2. By Product
8.3.4.2.3. By End-use
8.3.5. Australia Medical Radiation Detection Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Type
8.3.5.2.2. By Product
8.3.5.2.3. By End-use
9. South America Medical Radiation Detection Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Type (Gas-filled Detector, Scintillators)
9.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
9.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
9.2.4. By Country
9.3. South America: Country Analysis
9.3.1. Brazil Medical Radiation Detection Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Type
9.3.1.2.2. By Product
9.3.1.2.3. By End-use
9.3.2. Argentina Medical Radiation Detection Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Type
9.3.2.2.2. By Product
9.3.2.2.3. By End-use
9.3.3. Colombia Medical Radiation Detection Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Type
9.3.3.2.2. By Product
9.3.3.2.3. By End-use
10. Middle East and Africa Medical Radiation Detection Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Type (Gas-filled Detector, Scintillators)
10.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
10.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
10.2.4. By Country
10.3. MEA: Country Analysis
10.3.1. South Africa Medical Radiation Detection Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Type
10.3.1.2.2. By Product
10.3.1.2.3. By End-use
10.3.2. Saudi Arabia Medical Radiation Detection Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Type
10.3.2.2.2. By Product
10.3.2.2.3. By End-use
10.3.3. UAE Medical Radiation Detection Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Type
10.3.3.2.2. By Product
10.3.3.2.3. By End-use
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
12.1. Recent Development
12.2. Mergers & Acquisitions
12.3. Product Launches
13. Global Medical Radiation Detection Market: SWOT Analysis
14. Porter’s Five Forces Analysis
14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Products
15. Competitive Landscape
15.1. Thermo Fisher Scientific, Inc
15.1.1. Business Overview
15.1.2. Product Offerings
15.1.3. Recent Developments
15.1.4. Financials (As Reported)
15.1.5. Key Personnel
15.1.6. SWOT Analysis
15.2. UAB Polimaster Europe.
15.3. PTW Freiburg GmbH.
15.4. Sanlar imex services private limited.
15.5. Mirion Technologies, Inc.
15.6. MP BIOMEDICALS.
15.7. SIERRA RADIATION DOSIMETRY SERVICE, INC.
15.8. IBA Dosimetry GmbH.
16. Strategic Recommendations17. About the Publisher & Disclaimer

Companies Mentioned

  • Thermo Fisher Scientific, Inc.
  • UAB Polimaster Europe.
  • PTW Freiburg GmbH.
  • Sanlar imex services private limited.
  • Mirion Technologies, Inc.
  • MP BIOMEDICALS.
  • SIERRA RADIATION DOSIMETRY SERVICE, INC.
  • IBA Dosimetry GmbH.

Table Information