+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Hydroponics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2020-2030F

  • PDF Icon

    Report

  • 185 Pages
  • August 2025
  • Region: Global
  • TechSci Research
  • ID: 5908399
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Hydroponics Market was valued at USD 12.34 Billion in 2024, and is expected to reach USD 19.05 Billion by 2030, rising at a CAGR of 7.46%. Hydroponics is an advanced agricultural technique that is revolutionizing the way we cultivate plants. It involves the cultivation of crops without soil, utilizing a nutrient-rich water solution to directly deliver vital minerals to plant roots. This innovative approach offers numerous advantages. It maximizes resource efficiency by significantly reducing water consumption compared to traditional soil-based farming.

Moreover, hydroponics enables precise control over environmental factors such as temperature, humidity, and light, optimizing plant growth and minimizing the need for pesticides or herbicides. The versatility of this method allows for cultivation in various settings, ranging from urban rooftops to arid deserts, enabling year-round production and eliminating the limitations of seasonal farming. Furthermore, it mitigates soil-borne diseases, enhances crop yields, and presents a potential solution to global food security challenges. As our world grapples with increasing population pressures and environmental concerns, hydroponics emerges as a leading sustainable agricultural practice, offering a promising path towards more efficient, resilient, and environmentally friendly food production systems.

The growing trend of urbanization and the shrinking availability of arable land are further accelerating the adoption of hydroponics worldwide. In densely populated regions, especially in cities where space is limited, hydroponic systems provide a viable solution for cultivating fresh produce locally. Vertical farming, container-based farming, and rooftop hydroponic setups are gaining traction in urban centers, enabling communities to access pesticide-free, nutrient-rich vegetables without depending on long-distance supply chains. This not only reduces transportation emissions but also ensures consistent food quality. Additionally, government initiatives, technology advancements, and increased investment in controlled-environment agriculture are creating a favorable ecosystem for hydroponics to flourish.

Technological innovation plays a pivotal role in the rapid expansion of the hydroponics market. The integration of automation, IoT, artificial intelligence, and data analytics into hydroponic farming systems allows growers to monitor plant health, nutrient levels, and environmental conditions in real-time. These technologies enhance productivity, reduce labor costs, and ensure consistency in crop quality. Furthermore, educational programs and collaborations between research institutions and private companies are fostering knowledge transfer and innovation, making hydroponics more accessible and scalable. As sustainability and food resilience become global priorities, hydroponics continues to gain momentum as a transformative solution for future-ready agriculture.

Key Market Drivers

Rising Trend of Vertical Farming & Indoor Cultivation

The rising popularity of vertical farming and indoor cultivation is significantly boosting global demand for hydroponics. In 2024, over 37,000 vertical farming units were operational globally, with hydroponics accounting for approximately 85% of these systems. The method is ideal for maximizing limited urban space by enabling the growth of crops in stacked layers. Controlled indoor environments ensure optimal conditions for plant growth while reducing dependency on natural climate cycles. This makes hydroponics a central pillar in vertical farms, especially for producing leafy greens, herbs, and microgreens in densely populated urban areas.

Water efficiency is a key benefit driving the adoption of hydroponics in vertical farming. Compared to traditional soil-based agriculture, hydroponic systems use up to 95% less water. This conservation is made possible through closed-loop irrigation and precise nutrient delivery, making hydroponics a sustainable solution for regions facing water scarcity. Urban vertical farms that adopt hydroponics drastically reduce water wastage while improving productivity, helping cities meet their fresh food needs without placing undue stress on natural resources. Such water-saving capabilities also align with global sustainability goals and agricultural modernization strategies.

Hydroponic vertical farms are known to deliver up to 10 times higher yield per square foot than conventional farming methods. This increase in productivity is vital for feeding growing urban populations where arable land is limited or expensive. By stacking multiple layers of crops and maintaining consistent environmental conditions, farmers can achieve reliable, year-round harvests. This high-output farming model ensures a steady supply of fresh produce with fewer inputs, contributing to food security while lowering dependence on rural farmlands and long-distance supply chains.

Key Market Challenges

High Initial Investment

High initial investment is considered one of the significant barriers to the global adoption of hydroponics farming. This innovative agricultural technique, while offering substantial benefits in terms of water usage efficiency and space optimization, requires a sizable upfront capital investment. Prospective hydroponic farmers must account for the costs associated with acquiring the necessary equipment, including growth chambers, lighting systems, and nutrient solution reservoirs.

Additionally, the costs of setting up a controlled environment for crop growth, which often entails building greenhouses or indoor spaces with regulated temperature, light, and humidity, are also substantial. These high costs can be prohibitive for small-scale farmers or those in developing countries where access to capital is limited. Consequently, the demand for hydroponics could decrease globally, as farmers may opt for traditional farming methods with lower entry costs. However, it's important to note that the long-term benefits and potential profitability of hydroponics could offset initial investments, but this requires a change in perspective that prioritizes long-term sustainability over short-term expenditures.

Key Market Trends

Reduction in Water Usage Compared to Traditional Farming

Hydroponics, an innovative method of soil-less farming, is anticipated to witness a surge in demand globally, primarily due to its remarkable efficiency in water usage as compared to traditional farming. Traditional agriculture is notorious for its excessive water consumption, largely due to inefficient irrigation systems and water loss through soil evaporation. On the other hand, hydroponics operates on a recirculation model, which considerably reduces water usage (by up to 90% in some cases) as the nutrient solution is recycled and reused. This not only makes hydroponic systems more environmentally friendly but also presents a viable solution for farming in regions with water scarcity.

As global concern grows regarding dwindling fresh water supplies, the efficiency of hydroponics becomes increasingly appealing. Furthermore, the escalating effects of climate change and the urgency for more sustainable farming practices are expected to further drive the demand for hydroponic systems worldwide. The food production sector is continuously seeking ways to diminish its environmental footprint, and hydroponics offers a compelling solution, coupling efficient water usage with high crop yields. Thus, the reduction in water usage compared to conventional farming is a significant factor expected to propel the adoption of hydroponics globally.

Key Market Players

  • AeroFarms
  • Argus Control Systems Limited
  • BrightFarms
  • General Hydroponics Inc.
  • GreenTech Agro LLC
  • GrowLife Inc.
  • Hydrodynamics International
  • Hydrofarm LLC
  • LumiGrow Inc.
  • Thanet Earth Limited

Report Scope:

In this report, the Global Hydroponics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Hydroponics Market, By Type:

  • Aggregate Systems
  • Liquid Systems

Hydroponics Market, By Equipment:

  • HVAC
  • LED grow light
  • Control systems
  • Irrigation systems
  • Material handling
  • Others

Hydroponics Market, By Input:

  • Nutrient
  • Growth Media

Hydroponics Market, By Farming Method:

  • Indoor
  • Outdoor

Hydroponics Market, By Crop Type:

  • Vegetables
  • Fruits
  • Flowers
  • Others

Hydroponics Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Hydroponics Market.

Available Customizations:

With the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report.

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validations
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Voice of Customer
5. Global Hydroponics Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Type (Aggregate Systems and Liquid Systems)
5.2.2. By Equipment (HVAC, LED grow light, Control systems, Irrigation systems, Material handling, and Others)
5.2.3. By Input (Nutrient and Growth Media)
5.2.4. By Farming Method (Indoor and Outdoor)
5.2.5. By Crop Type (Vegetables, Fruits, Flowers, and Others)
5.2.6. By Region
5.2.7. By Company (2024)
5.3. Market Map
6. North America Hydroponics Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Type
6.2.2. By Equipment
6.2.3. By Input
6.2.4. By Farming Method
6.2.5. By Crop Type
6.2.6. By Country
6.3. North America: Country Analysis
6.3.1. United States Hydroponics Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Type
6.3.1.2.2. By Equipment
6.3.1.2.3. By Input
6.3.1.2.4. By Farming Method
6.3.1.2.5. By Crop Type
6.3.2. Canada Hydroponics Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Type
6.3.2.2.2. By Equipment
6.3.2.2.3. By Input
6.3.2.2.4. By Farming Method
6.3.2.2.5. By Crop Type
6.3.3. Mexico Hydroponics Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Type
6.3.3.2.2. By Equipment
6.3.3.2.3. By Input
6.3.3.2.4. By Farming Method
6.3.3.2.5. By Crop Type
7. Europe Hydroponics Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Type
7.2.2. By Equipment
7.2.3. By Input
7.2.4. By Farming Method
7.2.5. By Crop Type
7.2.6. By Country
7.3. Europe: Country Analysis
7.3.1. Germany Hydroponics Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Type
7.3.1.2.2. By Equipment
7.3.1.2.3. By Input
7.3.1.2.4. By Farming Method
7.3.1.2.5. By Crop Type
7.3.2. United Kingdom Hydroponics Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Type
7.3.2.2.2. By Equipment
7.3.2.2.3. By Input
7.3.2.2.4. By Farming Method
7.3.2.2.5. By Crop Type
7.3.3. Italy Hydroponics Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Type
7.3.3.2.2. By Equipment
7.3.3.2.3. By Input
7.3.3.2.4. By Farming Method
7.3.3.2.5. By Crop Type
7.3.4. France Hydroponics Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Type
7.3.4.2.2. By Equipment
7.3.4.2.3. By Input
7.3.4.2.4. By Farming Method
7.3.4.2.5. By Crop Type
7.3.5. Spain Hydroponics Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Type
7.3.5.2.2. By Equipment
7.3.5.2.3. By Input
7.3.5.2.4. By Farming Method
7.3.5.2.5. By Crop Type
8. Asia-Pacific Hydroponics Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Type
8.2.2. By Equipment
8.2.3. By Input
8.2.4. By Farming Method
8.2.5. By Crop Type
8.2.6. By Country
8.3. Asia-Pacific: Country Analysis
8.3.1. China Hydroponics Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Type
8.3.1.2.2. By Equipment
8.3.1.2.3. By Input
8.3.1.2.4. By Farming Method
8.3.1.2.5. By Crop Type
8.3.2. India Hydroponics Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Type
8.3.2.2.2. By Equipment
8.3.2.2.3. By Input
8.3.2.2.4. By Farming Method
8.3.2.2.5. By Crop Type
8.3.3. Japan Hydroponics Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Type
8.3.3.2.2. By Equipment
8.3.3.2.3. By Input
8.3.3.2.4. By Farming Method
8.3.3.2.5. By Crop Type
8.3.4. South Korea Hydroponics Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Type
8.3.4.2.2. By Equipment
8.3.4.2.3. By Input
8.3.4.2.4. By Farming Method
8.3.4.2.5. By Crop Type
8.3.5. Australia Hydroponics Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Type
8.3.5.2.2. By Equipment
8.3.5.2.3. By Input
8.3.5.2.4. By Farming Method
8.3.5.2.5. By Crop Type
9. South America Hydroponics Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Type
9.2.2. By Equipment
9.2.3. By Input
9.2.4. By Farming Method
9.2.5. By Crop Type
9.2.6. By Country
9.3. South America: Country Analysis
9.3.1. Brazil Hydroponics Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Type
9.3.1.2.2. By Equipment
9.3.1.2.3. By Input
9.3.1.2.4. By Farming Method
9.3.1.2.5. By Crop Type
9.3.2. Argentina Hydroponics Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Type
9.3.2.2.2. By Equipment
9.3.2.2.3. By Input
9.3.2.2.4. By Farming Method
9.3.2.2.5. By Crop Type
9.3.3. Colombia Hydroponics Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Type
9.3.3.2.2. By Equipment
9.3.3.2.3. By Input
9.3.3.2.4. By Farming Method
9.3.3.2.5. By Crop Type
10. Middle East and Africa Hydroponics Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Type
10.2.2. By Equipment
10.2.3. By Input
10.2.4. By Farming Method
10.2.5. By Crop Type
10.2.6. By Country
10.3. MEA: Country Analysis
10.3.1. South Africa Hydroponics Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Type
10.3.1.2.2. By Equipment
10.3.1.2.3. By Input
10.3.1.2.4. By Farming Method
10.3.1.2.5. By Crop Type
10.3.2. Saudi Arabia Hydroponics Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Type
10.3.2.2.2. By Equipment
10.3.2.2.3. By Input
10.3.2.2.4. By Farming Method
10.3.2.2.5. By Crop Type
10.3.3. UAE Hydroponics Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Type
10.3.3.2.2. By Equipment
10.3.3.2.3. By Input
10.3.3.2.4. By Farming Method
10.3.3.2.5. By Crop Type
10.4. Drivers
10.5. Challenges
11. Market Trends & Developments
11.1. Recent Development
11.2. Mergers & Acquisitions
11.3. Product Launches
12. Global Hydroponics Market: SWOT Analysis
13. Porter’s Five Forces Analysis
13.1. Competition in the Industry
13.2. Potential of New Entrants
13.3. Power of Suppliers
13.4. Power of Customers
13.5. Threat of Substitute Products
14. Competitive Landscape
14.1. AeroFarms
14.1.1. Business Overview
14.1.2. Service Offerings
14.1.3. Recent Developments
14.1.4. Key Personnel
14.1.5. SWOT Analysis
14.2. Argus Control Systems Limited
14.3. BrightFarms
14.4. General Hydroponics Inc.
14.5. GreenTech Agro LLC
14.6. GrowLife Inc.
14.7. Hydrodynamics International
14.8. Hydrofarm LLC
14.9. LumiGrow Inc.
14.10. Thanet Earth Limited
15. Strategic Recommendations16. About the Publisher & Disclaimer

Companies Mentioned

  • AeroFarms
  • Argus Control Systems Limited
  • BrightFarms
  • General Hydroponics Inc.
  • GreenTech Agro LLC
  • GrowLife Inc.
  • Hydrodynamics International
  • Hydrofarm LLC
  • LumiGrow Inc.
  • Thanet Earth Limited

Table Information