Speak directly to the analyst to clarify any post sales queries you may have.
10% Free customizationThis report comes with 10% free customization, enabling you to add data that meets your specific business needs.
Despite this growth, the technology faces a major obstacle regarding scanning speed relative to optical microscopy. The slow nature of the scanning process constrains sample throughput, making it difficult to incorporate AFM into high-volume manufacturing environments where fast cycle times are critical. As a result, this bottleneck frequently restricts the technology to offline laboratory examinations rather than real-time, inline production monitoring.
Market Drivers
The escalating demand for semiconductor wafer inspection and failure analysis serves as the primary catalyst driving the Global Atomic Force Microscopy (AFM) Market. As fabrication nodes decrease in size, manufacturers depend more on AFM's exceptional vertical resolution to identify non-visual defects and measure critical dimensions that optical techniques cannot resolve.This dependency is amplified by the industry's vast production scale, where accurate metrology is vital for yield management in high-value manufacturing. According to the Semiconductor Industry Association in February 2025, global semiconductor sales attained a record $627.6 billion in 2024, demonstrating the massive industrial activity requiring advanced inspection tools. Consequently, fabrication plants are adopting automated AFM systems to maintain quality control across their growing production lines.
Concurrently, the growth of nanotechnology and nanomaterials research serves as a strong basis for market expansion, supported by continued public funding. AFM is the standard instrument for characterizing material properties at the atomic scale, crucial for studying new composites and biological specimens. This research environment is bolstered by federal grants designed to promote scientific leadership; the National Nanotechnology Coordination Office reported in December 2024 that the President's 2025 Budget requested over $2.2 billion for the National Nanotechnology Initiative. This steady funding enables academic and government labs to purchase advanced equipment, directly generating revenue for major market players. Highlighting this trend, Bruker Corporation reported in 2025 that its BSI NANO segment, which includes its AFM business, achieved fiscal year 2024 revenue of $1.10 billion.
Market Challenges
A critical bottleneck preventing the Global Atomic Force Microscopy (AFM) Market from entering the high-volume manufacturing sector is the inherent limitation in scanning speed. In contrast to optical inspection systems that acquire surface data nearly instantly, AFM depends on a physical probe moving across the sample, a mechanical method that greatly prolongs data collection time. This fundamental restriction causes a significant throughput gap, making standard AFM setups inappropriate for real-time, inline wafer inspection where fast cycle times are a key performance requirement.This inability to keep pace with production line speeds directly hinders market growth due to the vast scale of modern semiconductor fabrication. The industry operates at volumes necessitating rapid metrology solutions to sustain yield without impeding output. According to SEMI, global installed wafer fab capacity reached 40.5 million wafers per quarter during the second quarter of 2024. Given such immense throughput demands, manufacturers cannot accept the latency associated with atomic force microscopy for general inspection. As a result, AFM remains primarily limited to offline failure analysis and R&D tasks, preventing vendors from accessing the significantly larger capital budgets designated for high-speed, inline process control machinery.
Market Trends
The progression of fully automated scanning workflows is transforming the market by removing the steep learning curve once required for atomic force microscopy. While obtaining high-quality nanoscale data previously demanded expert operators to manually tune complex feedback settings, modern systems now utilize intelligent algorithms to autonomously handle tip-sample engagement and scan optimization. This transition toward user-friendly design enables various industries to use AFM for routine measurements without specialized training, expanding access beyond dedicated surface scientists. This operational shift is driving significant financial results; Park Systems reported in February 2025 that its annual sales revenue reached 175 billion KRW in 2024, a figure attributed to the growing adoption of its automated metrology solutions in both industrial and academic fields.At the same time, the rise of correlative and multi-modal platforms is increasing as researchers demand comprehensive material insights that topography alone cannot supply. By combining AFM with complementary methods like Raman spectroscopy or scanning electron microscopy, these hybrid systems permit the simultaneous collection of physical, chemical, and structural data from the same nanoscale area. This synergy is especially vital for analyzing complex heterogeneous materials where linking structural details with chemical composition is necessary for precise characterization. The need for such multifaceted analysis is actively fueling segment growth; Oxford Instruments stated in June 2024 that its Materials & Characterisation segment achieved revenue of £252.2 million in its 2024 annual report, representing an 11.4% rise driven by strong sales of its advanced microscopy portfolio, including correlative AFM and Raman systems.
Key Players Profiled in the Atomic Force Microscopy (AFM) Market
- Bruker Corporation
- Park Systems Corporation
- Oxford Instruments PLC
- Horiba, Ltd.
- Hitachi High-Technologies Corporation
- Nanosurf AG
- WITec GmbH
- NT-MDT Spectrum Instruments
- NanoMagnetics Instruments Ltd.
- Nanonics Imaging Ltd.
Report Scope
In this report, the Global Atomic Force Microscopy (AFM) Market has been segmented into the following categories:Atomic Force Microscopy (AFM) Market, by Offering:
- Atomic Force Microscopes
- Probes
- Software
Atomic Force Microscopy (AFM) Market, by Grade:
- Research Grade AFM
- Industrial Grade AFM
Atomic Force Microscopy (AFM) Market, by Application:
- Academics
- Semiconductors & Electronics
- Life Sciences
- Material Science
- Others
Atomic Force Microscopy (AFM) Market, by Region:
- North America
- Europe
- Asia-Pacific
- South America
- Middle East & Africa
Competitive Landscape
Company Profiles: Detailed analysis of the major companies present in the Global Atomic Force Microscopy (AFM) Market.Available Customization
The analyst offers customization according to your specific needs. The following customization options are available for the report:- Detailed analysis and profiling of additional market players (up to five).
This product will be delivered within 1-3 business days.
Table of Contents
Companies Mentioned
The key players profiled in this Atomic Force Microscopy (AFM) market report include:- Bruker Corporation
- Park Systems Corporation
- Oxford Instruments PLC
- Horiba, Ltd.
- Hitachi High-Technologies Corporation
- Nanosurf AG
- WITec GmbH
- NT-MDT Spectrum Instruments
- NanoMagnetics Instruments Ltd.
- Nanonics Imaging Ltd.
Table Information
| Report Attribute | Details |
|---|---|
| No. of Pages | 185 |
| Published | January 2026 |
| Forecast Period | 2025 - 2031 |
| Estimated Market Value ( USD | $ 502.25 Million |
| Forecasted Market Value ( USD | $ 707.22 Million |
| Compound Annual Growth Rate | 5.8% |
| Regions Covered | Global |
| No. of Companies Mentioned | 11 |


