+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Field Erected Cooling Tower Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F

  • PDF Icon

    Report

  • 182 Pages
  • November 2023
  • Region: Global
  • TechSci Research
  • ID: 5911579
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Global Market for Field-Erected Cooling Towers achieved a valuation of USD 1.92 billion in 2022, displaying a compound annual growth rate (CAGR) of 4.09% throughout the forecast period. The increasing imposition of government regulations mandating closed-loop systems for cooling procedures is driving the demand for field-erected cooling towers. Additionally, the adoption of sustainable energy in off-grid systems is steadily gaining momentum in both developed and emerging economies. Supportive governmental policies, cost reductions, and enhanced efficiency of solar photovoltaic systems also play pivotal roles in promoting sustainable energy generation. Consequently, the expansion of the field-erected cooling tower market may face limitations in the long run due to the growth of renewable energy, acting as a restraining factor for the market.

Key Market Drivers

Industrial Expansion and Infrastructure Development

The ongoing industrial expansion and infrastructure development across various sectors are key drivers behind the growth of the global field-erected cooling tower market. As economies continue to grow and urbanize, there is a significant increase in demand for cooling solutions to dissipate excess heat generated by industrial processes and power generation. Efficient heat dissipation is crucial for industries such as power generation, petrochemicals, manufacturing, and data centers to maintain optimal operational conditions. In emerging economies, the rapid industrialization and urban development are necessitating cooling towers to support new manufacturing facilities, power plants, and commercial buildings. On the other hand, developed economies are focused on modernizing and upgrading existing infrastructure, leading to the retrofitting or replacement of older cooling systems with more advanced and efficient field-erected cooling towers. This trend of industrial growth and infrastructure development is expected to continue as economies strive to meet energy demands, promote manufacturing, and support technological advancements. The sustained demand for cooling solutions indicates a positive growth trajectory for the field-erected cooling tower market.

Stringent Environmental Regulations

Stringent environmental regulations imposed by governments and international bodies are compelling industries to adopt cooling solutions that minimize water consumption, reduce emissions, and comply with strict discharge standards. Field-erected cooling towers, which offer benefits such as reduced water usage and efficient heat transfer, align with these regulatory requirements. Governments worldwide are implementing restrictions on water usage, discharge quality, and emissions to address environmental concerns. Cooling towers are subject to regulations that govern aspects like water treatment, chemical usage, and plume abatement. As a result, industries are turning to field-erected cooling towers that incorporate technologies for water conservation, efficient water treatment, and reduced plume formation. To mitigate penalties, reputational risks, and operational disruptions, industries are seeking cooling solutions that not only provide effective heat exchange but also adhere to environmental standards. This driver propels the adoption of field-erected cooling towers, which are designed to meet or surpass stringent regulatory requirements while maintaining operational efficiency.

Key Market Challenges

Environmental Regulations and Water Scarcity Concerns

One of the primary challenges in the global field-erected cooling tower market is navigating the intricate landscape of environmental regulations and addressing concerns related to water scarcity. Cooling towers are significant water consumers due to their evaporative nature, and their operation often involves the utilization of substantial volumes of water. However, as freshwater resources face increasing strain in various regions worldwide, regulatory bodies and communities are placing greater emphasis on water conservation. Stricter environmental regulations dictate permissible water usage, discharge limits, and the management of chemical additives used in cooling tower water treatment. This presents a challenge for industries heavily reliant on cooling towers for process cooling, as they must seek ways to reduce water consumption and minimize environmental impact. Manufacturers and users of cooling towers are compelled to adopt technologies such as advanced recirculation systems, water treatment processes that enable reuse, and alternative water sources like treated wastewater.

Maintenance and Performance Optimization

Maintenance is a critical aspect of ensuring the reliable and efficient operation of field-erected cooling towers. Neglecting maintenance can lead to issues such as scaling, fouling, corrosion, and even system failures. Effectively managing maintenance challenges involves addressing the build-up of minerals and deposits in the cooling tower fill, mitigating biological growth that can impact system efficiency, and monitoring the condition of structural components over time. Moreover, optimizing the performance of cooling towers necessitates continuous monitoring, data analysis, and predictive maintenance strategies. Achieving peak efficiency while minimizing unexpected shutdowns requires the integration of sophisticated monitoring systems and skilled maintenance personnel. The incorporation of technology like sensors, automation, and data analytics presents opportunities and challenges in terms of implementation, data management, and decision-making.

Key Market Trends

Sustainability and Energy Efficiency in Cooling Tower Design

Sustainability and energy efficiency have emerged as dominant trends in the global field-erected cooling tower market. As industries and governments worldwide focus on reducing their carbon footprint and conserving energy resources, cooling tower designs are evolving to align with these goals. This trend is driven by increasing awareness of environmental impact, stringent regulations, and the need to optimize operational costs. Cooling towers are energy-intensive components of industrial processes, often consuming significant amounts of electricity to maintain efficient heat exchange. To address this challenge, manufacturers are developing innovative cooling tower designs that prioritize energy efficiency. This includes incorporating advanced technologies such as variable frequency drives (VFDs) to control fan speed based on load requirements. By adjusting fan speed, cooling towers can maintain optimal heat exchange while minimizing energy consumption during periods of lower demand. Additionally, sustainable materials and water management solutions are gaining prominence. Cooling towers are being constructed with eco-friendly materials and designed to minimize water usage through advanced recirculation systems and water treatment technologies. Hybrid cooling systems that combine multiple cooling methods, such as evaporative cooling and air cooling, are also being adopted to further optimize energy efficiency. As sustainability and energy efficiency become central considerations for businesses and industries, the integration of these principles into cooling tower design will continue to shape the market. Manufacturers that offer technologically advanced, environmentally conscious solutions stand to gain a competitive edge as the global cooling tower market evolves to meet the demands of a greener future.

Segmental Insights

Type Insights

Wet segment is expected to dominate the market during the forecast period. Wet type field-erected cooling towers operate based on the principle of evaporative cooling. This process involves exposing warm water to air in a manner that facilitates water evaporation, resulting in heat dissipation and the production of cooled water that can be recirculated for various industrial processes. Wet type cooling towers find extensive application in industries that generate excess heat during their operations, including power generation, petrochemicals, manufacturing, and data centers. They play a vital role in maintaining process efficiency and reliability. Moreover, wet type cooling towers are often more compact than their dry counterparts, making them suitable for space-constrained applications. The evaporative cooling process consumes less energy compared to solely air-cooled systems, as water evaporation requires less energy than forced air cooling. For the growing concern for environmental sustainability, there is an increasing demand for more eco-friendly cooling solutions. Wet type cooling towers can be designed with water-efficient features and water treatment systems to align with sustainability objectives. Hybrid cooling systems that combine wet and dry cooling technologies are gaining popularity, as they offer optimized performance while reducing water usage.

Design Insights

Induced segment is expected to dominate the market during the forecast period. The "induced draft" segment in the global field-erected cooling tower market refers to a specific configuration where airflow is generated by an induced draft fan positioned at the top of the tower. This design facilitates efficient heat exchange and cooling by pulling air through the tower. In an induced draft cooling tower, the airflow is directed from the bottom to the top of the tower. As warm water is sprayed or distributed at the tower's top, the induced draft fan draws air through the tower, promoting heat transfer and water evaporation. By creating a negative pressure zone at the top of the tower, the induced draft fan ensures uniform airflow distribution across the cooling medium, typically a fill material, resulting in improved heat exchange efficiency. Advancements in fan technology, including more efficient and quieter designs, offer opportunities to enhance the performance and energy efficiency of induced draft cooling towers. Energy efficiency is a prominent trend in the cooling tower market, and the potential for improved heat exchange efficiency offered by the induced draft design aligns with the industry's focus on minimizing energy consumption.

Regional Insights

Asia-Pacific is expected to dominate the market during the forecast period. The Asia-Pacific region plays a significant role in the global field-erected cooling tower market, driven by rapid industrialization, population growth, expanding energy demands, and increasing environmental sustainability awareness. The region's diverse economies contribute to a dynamic landscape for cooling tower demand and innovation. Robust industrial growth is witnessed across sectors like power generation, manufacturing, petrochemicals, and more. As industries expand, the need for efficient heat dissipation through cooling towers becomes vital for maintaining operational efficiency. Urbanization in the Asia-Pacific region fuels the construction of commercial buildings, residential complexes, and industrial facilities, leading to an increased demand for cooling solutions to manage excess heat generated by urban centers. Hybrid cooling systems that combine evaporative cooling with air cooling are gaining traction, offering efficient heat dissipation while addressing water scarcity concerns. Furthermore, the integration of smart sensors, data analytics, and automation into cooling tower systems represents a growing trend. These advanced technologies enhance operational efficiency, enable predictive maintenance, and provide real-time insights.

Report Scope:

In this report, the Global Field Erected Cooling Tower Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Global Field Erected Cooling Tower Market, By Type:

  • Wet
  • Dry
  • Hybrid

Global Field Erected Cooling Tower Market, By Design:

  • Natural
  • Induced
  • Forced

Global Field Erected Cooling Tower Market, By End-User:

  • Power Generation
  • Petrochemicals
  • Oil & Gas
  • Others

Global Field Erected Cooling Tower Market, By Region:

  • North America
  • Europe
  • South America
  • Middle East & Africa
  • Asia Pacific

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Field Erected Cooling Tower Market.

Available Customizations:

Global Field Erected Cooling Tower Market report with the given market data, the publisher offers customizations according to a company's specific needs.


This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Baseline Methodology
2.2. Key Industry Partners
2.3. Major Association and Secondary Sources
2.4. Forecasting Methodology
2.5. Data Triangulation & Validation
2.6. Assumptions and Limitations
3. Executive Summary4. Impact of COVID-19 on Global Field Erected Cooling Tower Market5. Voice of Customer6. Global Field Erected Cooling Tower Market Overview
7. Global Field Erected Cooling Tower Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Type (Wet, Dry and Hybrid)
7.2.2. By Design (Natural, Induced and Forced)
7.2.3. By End-User (Power Generation, Petrochemicals, Oil & Gas and Others)
7.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
7.3. By Company (2022)
7.4. Market Map
8. North America Field Erected Cooling Tower Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Type
8.2.2. By Design
8.2.3. By End-User
8.2.4. By Country
8.2.4.1. United States Field Erected Cooling Tower Market Outlook
8.2.4.1.1. Market Size & Forecast
8.2.4.1.1.1. By Value
8.2.4.1.2. Market Share & Forecast
8.2.4.1.2.1. By Type
8.2.4.1.2.2. By Design
8.2.4.1.2.3. By End-User
8.2.4.2. Canada Field Erected Cooling Tower Market Outlook
8.2.4.2.1. Market Size & Forecast
8.2.4.2.1.1. By Value
8.2.4.2.2. Market Share & Forecast
8.2.4.2.2.1. By Type
8.2.4.2.2.2. By Design
8.2.4.2.2.3. By End-User
8.2.4.3. Mexico Field Erected Cooling Tower Market Outlook
8.2.4.3.1. Market Size & Forecast
8.2.4.3.1.1. By Value
8.2.4.3.2. Market Share & Forecast
8.2.4.3.2.1. By Type
8.2.4.3.2.2. By Design
8.2.4.3.2.3. By End-User
9. Europe Field Erected Cooling Tower Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Type
9.2.2. By Design
9.2.3. By End-User
9.2.4. By Country
9.2.4.1. Germany Field Erected Cooling Tower Market Outlook
9.2.4.1.1. Market Size & Forecast
9.2.4.1.1.1. By Value
9.2.4.1.2. Market Share & Forecast
9.2.4.1.2.1. By Type
9.2.4.1.2.2. By Design
9.2.4.1.2.3. By End-User
9.2.4.2. France Field Erected Cooling Tower Market Outlook
9.2.4.2.1. Market Size & Forecast
9.2.4.2.1.1. By Value
9.2.4.2.2. Market Share & Forecast
9.2.4.2.2.1. By Type
9.2.4.2.2.2. By Design
9.2.4.2.2.3. By End-User
9.2.4.3. United Kingdom Field Erected Cooling Tower Market Outlook
9.2.4.3.1. Market Size & Forecast
9.2.4.3.1.1. By Value
9.2.4.3.2. Market Share & Forecast
9.2.4.3.2.1. By Type
9.2.4.3.2.2. By Design
9.2.4.3.2.3. By End-User
9.2.4.4. Italy Field Erected Cooling Tower Market Outlook
9.2.4.4.1. Market Size & Forecast
9.2.4.4.1.1. By Value
9.2.4.4.2. Market Share & Forecast
9.2.4.4.2.1. By Type
9.2.4.4.2.2. By Design
9.2.4.4.2.3. By End-User
9.2.4.5. Spain Field Erected Cooling Tower Market Outlook
9.2.4.5.1. Market Size & Forecast
9.2.4.5.1.1. By Value
9.2.4.5.2. Market Share & Forecast
9.2.4.5.2.1. By Type
9.2.4.5.2.2. By Design
9.2.4.5.2.3. By End-User
10. South America Field Erected Cooling Tower Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Type
10.2.2. By Design
10.2.3. By End-User
10.2.4. By Country
10.2.4.1. Brazil Field Erected Cooling Tower Market Outlook
10.2.4.1.1. Market Size & Forecast
10.2.4.1.1.1. By Value
10.2.4.1.2. Market Share & Forecast
10.2.4.1.2.1. By Type
10.2.4.1.2.2. By Design
10.2.4.1.2.3. By End-User
10.2.4.2. Colombia Field Erected Cooling Tower Market Outlook
10.2.4.2.1. Market Size & Forecast
10.2.4.2.1.1. By Value
10.2.4.2.2. Market Share & Forecast
10.2.4.2.2.1. By Type
10.2.4.2.2.2. By Design
10.2.4.2.2.3. By End-User
10.2.4.3. Argentina Field Erected Cooling Tower Market Outlook
10.2.4.3.1. Market Size & Forecast
10.2.4.3.1.1. By Value
10.2.4.3.2. Market Share & Forecast
10.2.4.3.2.1. By Type
10.2.4.3.2.2. By Design
10.2.4.3.2.3. By End-User
11. Middle East & Africa Field Erected Cooling Tower Market Outlook
11.1. Market Size & Forecast
11.1.1. By Value
11.2. Market Share & Forecast
11.2.1. By Type
11.2.2. By Design
11.2.3. By End-User
11.2.4. By Country
11.2.4.1. Saudi Arabia Field Erected Cooling Tower Market Outlook
11.2.4.1.1. Market Size & Forecast
11.2.4.1.1.1. By Value
11.2.4.1.2. Market Share & Forecast
11.2.4.1.2.1. By Type
11.2.4.1.2.2. By Design
11.2.4.1.2.3. By End-User
11.2.4.2. UAE Field Erected Cooling Tower Market Outlook
11.2.4.2.1. Market Size & Forecast
11.2.4.2.1.1. By Value
11.2.4.2.2. Market Share & Forecast
11.2.4.2.2.1. By Type
11.2.4.2.2.2. By Design
11.2.4.2.2.3. By End-User
11.2.4.3. South Africa Field Erected Cooling Tower Market Outlook
11.2.4.3.1. Market Size & Forecast
11.2.4.3.1.1. By Value
11.2.4.3.2. Market Share & Forecast
11.2.4.3.2.1. By Type
11.2.4.3.2.2. By Design
11.2.4.3.2.3. By End-User
12. Asia Pacific Field Erected Cooling Tower Market Outlook
12.1. Market Size & Forecast
12.1.1. By Type
12.1.2. By Design
12.1.3. By End-User
12.1.4. By Country
12.1.4.1. China Field Erected Cooling Tower Market Outlook
12.1.4.1.1. Market Size & Forecast
12.1.4.1.1.1. By Value
12.1.4.1.2. Market Share & Forecast
12.1.4.1.2.1. By Type
12.1.4.1.2.2. By Design
12.1.4.1.2.3. By End-User
12.1.4.2. India Field Erected Cooling Tower Market Outlook
12.1.4.2.1. Market Size & Forecast
12.1.4.2.1.1. By Value
12.1.4.2.2. Market Share & Forecast
12.1.4.2.2.1. By Type
12.1.4.2.2.2. By Design
12.1.4.2.2.3. By End-User
12.1.4.3. Japan Field Erected Cooling Tower Market Outlook
12.1.4.3.1. Market Size & Forecast
12.1.4.3.1.1. By Value
12.1.4.3.2. Market Share & Forecast
12.1.4.3.2.1. By Type
12.1.4.3.2.2. By Design
12.1.4.3.2.3. By End-User
12.1.4.4. South Korea Field Erected Cooling Tower Market Outlook
12.1.4.4.1. Market Size & Forecast
12.1.4.4.1.1. By Value
12.1.4.4.2. Market Share & Forecast
12.1.4.4.2.1. By Type
12.1.4.4.2.2. By Design
12.1.4.4.2.3. By End-User
12.1.4.5. Australia Field Erected Cooling Tower Market Outlook
12.1.4.5.1. Market Size & Forecast
12.1.4.5.1.1. By Value
12.1.4.5.2. Market Share & Forecast
12.1.4.5.2.1. By Type
12.1.4.5.2.2. By Design
12.1.4.5.2.3. By End-User
13. Market Dynamics
13.1. Drivers
13.2. Challenges
14. Market Trends and Developments
15. Company Profiles
15.1. ENEXIO Management GmbH
15.1.1. Business Overview
15.1.2. Key Revenue and Financials
15.1.3. Recent Developments
15.1.4. Key Personnel
15.1.5. Key Product/Services Offered
15.2. Towertech Cooling System Pvt. Ltd
15.2.1. Business Overview
15.2.2. Key Revenue and Financials
15.2.3. Recent Developments
15.2.4. Key Personnel
15.2.5. Key Product/Services Offered
15.3. Watco Group Ltd
15.3.1. Business Overview
15.3.2. Key Revenue and Financials
15.3.3. Recent Developments
15.3.4. Key Personnel
15.3.5. Key Product/Services Offered
15.4. Paharpur Cooling Towers Ltd
15.4.1. Key Revenue and Financials
15.4.2. Recent Developments
15.4.3. Key Personnel
15.4.4. Key Product/Services Offered
15.5. SPX Cooling Technologies Inc.
15.5.1. Business Overview
15.5.2. Key Revenue and Financials
15.5.3. Recent Developments
15.5.4. Key Personnel
15.5.5. Key Product/Services Offered
15.6. Hamon & Cie International SA
15.6.1. Business Overview
15.6.2. Key Revenue and Financials
15.6.3. Recent Developments
15.6.4. Key Personnel
15.6.5. Key Product/Services Offered
15.7. Babcock & Wilcox Enterprises Inc.
15.7.1. Business Overview
15.7.2. Key Revenue and Financials
15.7.3. Recent Developments
15.7.4. Key Personnel
15.7.5. Key Product/Services Offered
15.8. Evapco Inc.
15.8.1. Business Overview
15.8.2. Key Revenue and Financials
15.8.3. Recent Developments
15.8.4. Key Personnel
15.8.5. Key Product/Services Offered
15.9. Cyrco Inc.
15.9.1. Business Overview
15.9.2. Key Revenue and Financials
15.9.3. Recent Developments
15.9.4. Key Personnel
15.9.5. Key Product/Services Offered
15.10. Marley Flow Control Pty Ltd
15.10.1. Business Overview
15.10.2. Key Revenue and Financials
15.10.3. Recent Developments
15.10.4. Key Personnel
15.10.5. Key Product/Services Offered
16. Strategic Recommendations17. About the Publisher & Disclaimer

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • ENEXIO Management GmbH
  • Towertech Cooling System Pvt. Ltd
  • Watco Group Ltd
  • Paharpur Cooling Towers Ltd
  • SPX Cooling Technologies Inc.
  • Hamon & Cie International SA
  • Babcock & Wilcox Enterprises Inc.
  • Evapco Inc.
  • Cyrco Inc.
  • Marley Flow Control Pty Ltd