+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Bioliquid Heat & Power Generation Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2021-2031

  • PDF Icon

    Report

  • 186 Pages
  • January 2026
  • Region: Global
  • TechSci Research
  • ID: 5911713
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Global Bioliquid Heat & Power Generation Market is anticipated to rise from USD 2.62 Billion in 2025 to USD 4.21 Billion by 2031 at a CAGR of 8.23%. This market employs liquid biomass fuels - including bioethanol, biodiesel, and vegetable oils - to generate thermal energy and electricity using turbines or combustion engines. Growth is primarily propelled by rigorous government mandates for decarbonization intended to lessen reliance on fossil fuels, alongside the essential need for dispatchable renewable energy to balance power grids against the intermittency of solar and wind resources. Furthermore, the capacity to economically utilize waste streams and agricultural residues offers a foundational driver for adoption, distinct from fleeting technological fads.

Conversely, market saturation is significantly impeded by the fluctuating availability and pricing of feedstocks, a situation often worsened by ethical conflicts regarding land use for fuel versus food. Data from the World Bioenergy Association indicates that global electricity generation from bioenergy hit 711 TWh in 2024. Although this statistic highlights the vast magnitude of the general biomass power industry, the specific growth of bioliquid applications is restricted by intricate upstream supply chain logistics and the necessity for rigorous sustainability certifications.

Market Drivers

The central catalyst for the Global Bioliquid Heat & Power Generation Market is the establishment of favorable renewable energy incentives and policies. Across the globe, governments are introducing fiscal subsidies and blending mandates to hasten the shift from fossil fuels to bioliquids within power and thermal applications. Such regulatory structures lower the cost premium linked to biofuel manufacturing, thereby rendering sustainable liquid fuels financially feasible for industrial operators and utilities. As noted by the International Energy Agency (IEA) in its October 2024 'Renewables 2024' report, the deployment of renewable fuels is projected to grow by 4 EJ by 2030, largely due to specific supportive policies in major nations such as the United States, Brazil, and India. This demand, fueled by policy, guarantees a secure investment landscape for the growth of bioliquid infrastructure.

Furthermore, the intensifying global emphasis on reducing carbon emissions and decarbonization accelerates the uptake of bioliquid technologies, especially in industries that demand dispatchable electricity or high-temperature heat. Sectors dealing with rigorous carbon limitations employ bioliquids to sustain operations while drastically reducing their greenhouse gas emissions relative to diesel or coal.

This pressing need to decarbonize supply chains fosters production scalability and the incorporation of bioenergy into the broader energy portfolio. The Energy Institute’s '2025 Statistical Review of World Energy', released in June 2025, reveals that renewable sources provided 32% of the global electricity supply in 2024, mirroring a deepened industrial dedication to low-carbon energy. Additionally, the International Renewable Energy Agency (IRENA) reported in 2025 that global bioenergy capacity grew by 4.6 GW in 2024, highlighting the expanding significance of biomass solutions in the move toward a net-zero energy framework.

Market Challenges

The major obstacle limiting the growth of the Global Bioliquid Heat & Power Generation Market involves significant volatility in feedstock availability and pricing, further aggravated by the ethical conflict regarding land usage for food versus fuel. Generating power from bioliquids depends extensively on agricultural goods such as biodiesel and vegetable oils, which are naturally vulnerable to geopolitical instability, erratic weather conditions, and rival demand from the food industry. These elements result in a fragile supply chain characterized by severe fluctuations in fuel costs, which compromise the financial sustainability of power plants that need consistent operating expenses to compete with other renewable baseload alternatives.

Consequently, this instability obstructs market penetration by fostering a negative investment environment and interrupting reliable power generation. Capital commitment to infrastructure is deterred by variable and ethically disputed primary input costs, resulting in stagnation of capacity growth. The Food and Agriculture Organization reported in late 2024 that the global vegetable oil price index rose by 32% year-over-year due to constricted supplies in key production areas. Such drastic price increases diminish profit margins and compel operators to reduce output, thereby hindering bioliquid technologies from attaining the widespread adoption required to substantially boost their presence in the global energy mix.

Market Trends

A revolutionary trend within the bioliquid power industry is the swift uptake of Hydrotreated Vegetable Oil (HVO), largely because it functions as a drop-in substitute for traditional diesel within current infrastructure. Operators of data centers and utilities are increasingly adopting this paraffinic fuel to lower carbon emissions in peaking and backup power generation, avoiding expensive engine alterations or warranty voids. Such compatibility facilitates an instant decrease in lifecycle emissions while preserving the dependability required for critical power systems. As stated in Caterpillar's '2024 Sustainability Report' from May 2025, clients using their rental power solutions have utilized more than 30 million liters of HVO since 2022, proving the growing commercial feasibility of this fuel in rigorous industrial settings.

Concurrently, the market is experiencing a structural shift towards waste-based and second-generation feedstocks to address ethical land-use issues and bolster supply chain durability. Producers are modifying their procurement tactics to move from virgin crop oils to circular resources like animal fat residues and used cooking oil, thereby separating energy production from fluctuating food commodity markets. This transition improves the sustainability credentials of bioliquid power and conforms to stricter regulations that favor non-food biomass. Neste’s 'Annual Report 2024', published in February 2025, indicates that waste and residue feedstocks constituted an average of 90% of the firm's total renewable material inputs in 2024, emphasizing the industrial magnitude of this strategic move towards circular economy tenets.

Key Players Profiled in the Bioliquid Heat & Power Generation Market

  • Albioma SA
  • Archer-Daniels-Midland Co
  • Ameresco Inc.
  • Envitec Biogas AG
  • Enviva Inc.
  • Drax Group
  • Strabag SE
  • Pinnacle Renewable Energy Inc.
  • Enerkem
  • Green Plains Inc.

Report Scope

In this report, the Global Bioliquid Heat & Power Generation Market has been segmented into the following categories:

Bioliquid Heat & Power Generation Market, by Fuel Type:

  • Bioethanol
  • Biodiesel
  • Others

Bioliquid Heat & Power Generation Market, by Technology:

  • Engine
  • Turbine
  • Others

Bioliquid Heat & Power Generation Market, by Region:

  • North America
  • Europe
  • Asia-Pacific
  • South America
  • Middle East & Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Bioliquid Heat & Power Generation Market.

Available Customization

The analyst offers customization according to your specific needs. The following customization options are available for the report:
  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Voice of Customer
5. Global Bioliquid Heat & Power Generation Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Fuel Type (Bioethanol, Biodiesel, Others)
5.2.2. By Technology (Engine, Turbine, Others)
5.2.3. By Region
5.2.4. By Company (2025)
5.3. Market Map
6. North America Bioliquid Heat & Power Generation Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Fuel Type
6.2.2. By Technology
6.2.3. By Country
6.3. North America: Country Analysis
6.3.1. United States Bioliquid Heat & Power Generation Market Outlook
6.3.2. Canada Bioliquid Heat & Power Generation Market Outlook
6.3.3. Mexico Bioliquid Heat & Power Generation Market Outlook
7. Europe Bioliquid Heat & Power Generation Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Fuel Type
7.2.2. By Technology
7.2.3. By Country
7.3. Europe: Country Analysis
7.3.1. Germany Bioliquid Heat & Power Generation Market Outlook
7.3.2. France Bioliquid Heat & Power Generation Market Outlook
7.3.3. United Kingdom Bioliquid Heat & Power Generation Market Outlook
7.3.4. Italy Bioliquid Heat & Power Generation Market Outlook
7.3.5. Spain Bioliquid Heat & Power Generation Market Outlook
8. Asia-Pacific Bioliquid Heat & Power Generation Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Fuel Type
8.2.2. By Technology
8.2.3. By Country
8.3. Asia-Pacific: Country Analysis
8.3.1. China Bioliquid Heat & Power Generation Market Outlook
8.3.2. India Bioliquid Heat & Power Generation Market Outlook
8.3.3. Japan Bioliquid Heat & Power Generation Market Outlook
8.3.4. South Korea Bioliquid Heat & Power Generation Market Outlook
8.3.5. Australia Bioliquid Heat & Power Generation Market Outlook
9. Middle East & Africa Bioliquid Heat & Power Generation Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Fuel Type
9.2.2. By Technology
9.2.3. By Country
9.3. Middle East & Africa: Country Analysis
9.3.1. Saudi Arabia Bioliquid Heat & Power Generation Market Outlook
9.3.2. UAE Bioliquid Heat & Power Generation Market Outlook
9.3.3. South Africa Bioliquid Heat & Power Generation Market Outlook
10. South America Bioliquid Heat & Power Generation Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Fuel Type
10.2.2. By Technology
10.2.3. By Country
10.3. South America: Country Analysis
10.3.1. Brazil Bioliquid Heat & Power Generation Market Outlook
10.3.2. Colombia Bioliquid Heat & Power Generation Market Outlook
10.3.3. Argentina Bioliquid Heat & Power Generation Market Outlook
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
12.1. Mergers & Acquisitions (If Any)
12.2. Product Launches (If Any)
12.3. Recent Developments
13. Global Bioliquid Heat & Power Generation Market: SWOT Analysis
14. Porter's Five Forces Analysis
14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Products
15. Competitive Landscape
15.1. Albioma SA
15.1.1. Business Overview
15.1.2. Products & Services
15.1.3. Recent Developments
15.1.4. Key Personnel
15.1.5. SWOT Analysis
15.2. Archer-Daniels-Midland Co
15.3. Ameresco Inc
15.4. Envitec Biogas AG
15.5. Enviva Inc.
15.6. Drax Group
15.7. Strabag SE
15.8. Pinnacle Renewable Energy Inc.
15.9. Enerkem
15.10. Green Plains Inc.
16. Strategic Recommendations

Companies Mentioned

The key players profiled in this Bioliquid Heat & Power Generation market report include:
  • Albioma SA
  • Archer-Daniels-Midland Co
  • Ameresco Inc
  • Envitec Biogas AG
  • Enviva Inc.
  • Drax Group
  • Strabag SE
  • Pinnacle Renewable Energy Inc.
  • Enerkem
  • Green Plains Inc.

Table Information