+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

The Global Bioplastics Market 2026-2036

  • PDF Icon

    Report

  • 780 Pages
  • August 2025
  • Region: Global
  • Future Markets, Inc
  • ID: 5914292

The bioplastics industry represents a transformative investment opportunity positioned at the intersection of environmental necessity and technological innovation. With conventional plastic production exceeding 394 million tonnes annually, the urgent need for sustainable alternatives has created a rapidly expanding market with exceptional long-term growth potential. The bioplastics market demonstrated robust fundamentals in 2024, exceeding 4 million tonnes in production, and potentially  reaching 15-18 million tonnes by 2036, representing a four-fold increase from current levels. This expansion would position bioplastics to capture roughly 3-4% of the total polymer market by 2036, up from the current 1%. Conservative projections suggest the market value could exceed $120-150 billion by 2036, assuming the current growth momentum continues alongside technological improvements that reduce production costs. Bio-based biodegradable polymers, could represent the largest segment, while bio-based non-biodegradable alternatives maintain steady growth as drop-in replacements for conventional plastics.

By 2036, the geographic distribution of bioplastics production is expected to shift significantly. North America's aggressive 25% CAGR in capacity expansion suggests it could challenge Asia's current dominance, potentially capturing 25-30% of global production by 2036. Asia will likely maintain leadership but with a reduced share of approximately 45-50%, while Europe may stabilize around 15-18% despite current policy support. The next decade will witness substantial technological breakthroughs in polymer performance and cost reduction. Advanced PHA and PLA formulations are expected to achieve price parity with conventional plastics in key applications by 2030-2032. Marine-degradable polymers and second-generation feedstock technologies will mature, addressing current sustainability concerns while opening new market segments.

Application diversity will expand beyond current concentrations in packaging and fibers. By 2036, automotive components, electronics casings, and medical applications could represent 20-25% of the market as performance characteristics improve and regulatory approvals increase. Several structural factors will sustain investment attractiveness through 2036. Regulatory pressure will intensify globally, with single-use plastic bans expanding and carbon pricing mechanisms favoring bio-based alternatives. The EU's commitment of €500 million through Horizon 2025 represents early-stage support, with subsequent funding cycles likely to increase substantially. Corporate adoption will accelerate as companies integrate sustainability metrics  into core business strategies. Major brands including PepsiCo, Unilever, and others are transitioning supply chains toward bio-based materials, creating stable, long-term demand. 

The industry's minimal land use footprint - currently 0.013% of global agricultural area - provides significant expansion capacity without competing with food production. Technological advances in waste-to-polymer conversion and algae-based feedstocks will further reduce resource constraints while improving cost competitiveness. Investment considerations include current production cost premiums of 20-50% over conventional plastics, though this gap is narrowing annually. Scaling challenges and infrastructure requirements present near-term obstacles, while recycling system integration remains underdeveloped. However, these challenges also represent opportunities for early-stage investors to capture value as solutions emerge.

The bioplastics sector offers compelling risk-adjusted returns through 2036, supported by regulatory tailwinds, technological maturation, and fundamental demand shifts. The industry's evolution from niche applications to mainstream adoption creates multiple investment entry points across the value chain, from feedstock development to end-product manufacturing. Investors positioning themselves strategically in this expanding market can capitalize on the irreversible transition toward sustainable materials in the global economy.

The Global Bioplastics Market 2026-2036 report provides an exhaustive analysis of the bioplastics landscape through 2036, offering strategic insights for investors, manufacturers, policymakers, and supply chain stakeholders navigating this transformative sector. With the global bioplastics market projected to reach significant scale by 2036, this report delivers critical market intelligence covering production capacities, technology developments, feedstock availability, regional dynamics, and competitive positioning across all major bioplastic categories. The analysis encompasses both bio-based and biodegradable polymers, natural fibers, lignin applications, and emerging next-generation materials reshaping the plastics industry.

Report Contents include:

  • Global plastics market supply analysis and bioplastics positioning
  • Comprehensive polymer recycling landscape assessment
  • Bio-based versus biodegradable polymer market segmentation
  • Regional distribution analysis with capacity utilization rates
  • Next-generation bio-polymer technology roadmap
  • Chemical recycling integration strategies
  • Novel feedstock source evaluation and waste-to-bioplastics conversion
  • Global Production Capacity Analysis (2024-2036)
    • Current production capacity assessment across all polymer types
    • Detailed capacity forecasts by polymer category and geographic region
    • Investment trend analysis and market forecasting methodologies
    • Capacity utilization optimization strategies
  • Environmental Impact & Sustainability Assessment
    • Life cycle assessment comparative analysis for major biopolymer types
    • Land use and feedstock sustainability impact evaluation
    • Carbon footprint comparison with fossil-based alternatives
    • Bio-composites environmental performance metrics
  • Feedstock & Intermediates Market Analysis
    • Comprehensive biorefinery process mapping and economic analysis
    • Plant-based feedstock categories including starch, sugar crops, lignocellulosic biomass, and plant oils
    • Waste stream utilization covering food waste, agricultural residues, forestry waste, and municipal solid waste
    • Microbial and mineral source applications
    • Gaseous feedstock integration including biogas and syngas utilization
  • Bio-based Polymer Technologies & Applications
    • Synthetic bio-based polymers including APC, PLA, Bio-PET, Bio-PTT, Bio-PEF, Bio-PA, Bio-PBAT, PBS, Bio-PE, Bio-PP, and superabsorbent polymers
    • Natural bio-based polymers featuring PHA, cellulose derivatives, protein-based polymers, algal and fungal materials, and chitosan applications
    • Natural fiber comprehensive analysis covering manufacturing methods, matrix materials, and commercial applications
    • Lignin technology applications and market opportunities
  • Market Applications & End-User Analysis
    • Packaging applications (flexible and rigid) with production volume forecasts
    • Consumer goods, automotive, building and construction sector applications
    • Textiles and fibers market penetration analysis
    • Electronics industry adoption patterns
    • Agriculture and horticulture market opportunities
    • Regional production analysis covering North America, Europe, Asia-Pacific, and Latin America
  • Company Profiles (575+ Companies): 3DBioFibR, 3M, 9Fiber Inc., ADBioplastics, Adriano di Marti/Desserto, Advanced Biochemical Thailand, Aeropowder Limited, Aemetis Inc., AEP Polymers, AGRANA Staerke GmbH, AgroRenew, Ahlstrom-Munksjö Oyj, Algaeing, Algenesis Corporation, Algal Bio, Algenol, Algenie, Alginor ASA, Algix LLC, AmphiStar, AMSilk GmbH, Ananas Anam Ltd., An Phát Bioplastics, Anellotech Inc., Andritz AG, Anqing He Xing Chemical, Ankor Bioplastics, ANPOLY Inc., Applied Bioplastics, Aquafil S.p.A., Aquapak Polymers Ltd, Archer Daniel Midland Company, Arctic Biomaterials Oy, Ardra Bio, Arekapak GmbH, Arkema S.A, Arlanxeo, Arrow Greentech, Attis Innovations LLC, Arzeda Corp., Asahi Kasei Chemicals Corporation, AVA Biochem AG, Avantium B.V., Avani Eco, Avient Corporation, Axcelon Biopolymers Corporation, Ayas Renewables Inc., Azolla, Bambooder Biobased Fibers B.V., BASF SE, Bast Fiber Technologies Inc., BBCA Biochemical & GALACTIC Lactic Acid, Bcomp ltd., Better Fibre Technologies, Betulium Oy, Beyond Leather Materials ApS, Bioextrax AB, Bio Fab NZ, BIO-FED, Biofibre GmbH, Biofine Technology LLC, Bio2Materials Sp. z o.o., Biokemik, Bioleather, BIOLO, BioLogiQ Inc., Biomass Resin Holdings, Biome Bioplastics, BioSolutions, Biosyntia, BIOTEC GmbH & Co. KG, Biofiber Tech Sweden AB, Bioform Technologies, BIO-LUTIONS International AG, Biophilica, Bioplastech Ltd, Bioplastix, Biopolax, Biotecam, Biotic Circular Technologies Ltd., Biotrem, Biovox, Bioweg, BlockTexx Pty Ltd., Bloom Biorenewables SA, BluCon Biotech GmbH, Blue BioFuels Inc., Blue Ocean Closures, Bluepha Beijing Lanjing Microbiology Technology, Bolt Threads, Borealis AG, Borregaard Chemcell, Bosk Bioproducts Inc., Bowil Biotech Sp. z o.o., B-PREG, Braskem SA, Bucha Bio Inc., Buyo Bioplastic Ltd., Burgo Group S.p.A., C16 Biosciences, Carbiolice, Carbios, Carbon Crusher, Carbonwave, Cardia Bioplastics Ltd., Cardolite, CARAPAC Company, Carapace Biopolymers, Cargill, Cass Materials Pty Ltd, Catalyxx, Cathay Industrial Biotech Ltd., Celanese Corporation, Cellicon B.V., Cellucomp Ltd., Celluforce, CellON, Cellugy, Cellutech AB (Stora Enso), ChainCraft, CH-Bioforce Oy, ChakraTech, Checkerspot Inc., Chempolis Oy, Chitelix, Chongqing Bofei Biochemical Products, Chuetsu Pulp & Paper, CIMV, Circa Group, Circular Systems, CJ Biomaterials Inc., CO2BioClean, Coastgrass ApS, COFCO Cooperation Ltd., Coffeeco Upcycle, Corn Next, Corumat Inc., Clariant AG, CreaFill Fibers Corporation, Cristal Union Group, Cruz Foam, CuanTec Ltd., Daesang, Daicel Corporation, Daicel Polymer Ltd., DaikyoNishikawa Corporation, Daio Paper Corporation, Daishowa Paper Products, DAK Americas LLC, Danimer Scientific LLC, DENSO Corporation, Diamond Green Diesel LLC, DIC Corporation, DIC Products Inc., Dispersa, DKS Co. Ltd., Domsjö Fabriker AB, Domtar Paper Company LLC, Dongnam Realize, Dongying Hebang Chemical Corp., Dow Inc., Royal DSM N.V., DuFor Resins B.V., DuPont, DuPont Tate & Lyle Bio Products, Eastman Chemical Ltd. Corporation, ecoGenie biotech, Ecopel, Ecoshell, Ecovia Renewables, Ecovance, Ecovative Design LLC, Eden Materials, EggPlant Srl, Ehime Paper Manufacturing, Emirates Biotech, EMS-Grivory, Enerkem Inc., Enkev, Eni S.p.A., Enviral, EnginZyme AB, Enzymit, Eranova, Esbottle Oy, EveryCarbon, Evolved By Nature, Evonik Industries AG, Evrnu, FabricNano, Fairbrics, Faircraft, Far Eastern New Century Corporation, Fermentalg, Fiberlean Technologies, Fiberight, Fillerbank Limited, Fiquetex S.A.S., FKuR Kunststoff GmbH, FlexSea, Flocus, Floreon, Foamplant BV, FP Innovations, Fraunhofer Center for Chemical-Biotechnological Processes CBP, Fraunhofer Institute for Silicate Research ISC, Fraunhofer Institute for Structural Durability and System Reliability LBF, Freyzein, Fruit Leather Rotterdam, Fuji Pigment, Full Cycle Bioplastics LLC, Furukawa Electric, Futerro, Futuramat Sarl, Futurity Bio-Ventures Ltd., Gaiamer Biotechnologies, Galatea Biotech Srl, G+E GETEC Holding GmbH, Gelatex Technologies OÜ, Gen3Bio, Genecis Bioindustries Inc., GeneusBiotech BV, Genomatica, Gevo Inc, Global Bioenergies SA, Grabio Greentech Corporation, Grado Zero Innovation, Granbio Technologies, Green Science Alliance, GRECO, Grupp MAIP, GS Alliance, Guangzhou Bio-plus Materials Technology, Haldor Topsoe A/S, Hattori Shoten K.K., Hebei Casda Biomaterials, Hebei Jiheng Chemical, Hebei Xinhua Lactic Acid, Heilongjiang Chenneng Bioengineering Ltd., Helian Polymers BV, Henan Jindan Lactic Acid Technology, Henan Xinghan Biological Technology, Hengshui Jinghua Chemical, Hengli Petrochemical, Hexa Chemical/Nature Gift, Hexas Biomass Inc., Hexion Inc, Hokuetsu Toyo Fibre, Honext Material SL, HTL Biotechnology, Hubei Guangshui National Chemical, Huitong Biomaterials, Humintech GmbH, Hunan Anhua Lactic Acid, Icytos, India Glycols Ltd., Indochine Bio Plastiques (ICBP) Sdn Bhd, Indorama Ventures Public, Ingevity, Inner Mettle, Infinited Fiber Company Oy, Iogen Corporation, Inovyn, Insempra, Inspidere B.V., Ioniqa, Itaconix, Intec Bioplastics, JeNaCell GmbH, and over 400 additional companies across the global bioplastics value chain representing feedstock suppliers, technology developers, polymer manufacturers, equipment providers, and end-user applications companies.

This report serves as the definitive resource for understanding the bioplastics market transformation through 2036, providing actionable intelligence for strategic decision-making in this rapidly evolving sustainable materials landscape.

Table of Contents

1           EXECUTIVE SUMMARY
1.1        What are bioplastics?
1.2        Global Plastics Market and Supply
1.3        Recycling Polymers
1.4        Bio-based and Biodegradable vs. Non-biodegradable Polymers
1.5        Regional Distribution
1.6        Next Generation Bio-based Polymers
1.7        Integration with Chemical Recycling
1.8        Novel Feedstock Sources
1.9        Turning Waste into Bioplastics
1.10      Global Bioplastics Capacity
1.10.1   Production capacities 2024
1.10.2   Production capacities forecast 2025-2036
1.10.3   Production capacities by region 2024-2036
1.11      Investment Trends and Market Forecasts
1.12      Environmental Impact and Sustainability
1.12.1   Life Cycle Assessment of Bioplastics
1.12.2   Land Use and Feedstock Sustainability
1.12.3   Carbon Footprint Comparison with Fossil-based Alternatives
1.13      Bio-composites

2           INTRODUCTION
2.1        Types of bioplastics
2.2        Feedstocks
2.2.1     Types
2.2.2     Prices
2.2.3     Alternative feedstocks for bioplastics
2.3        Bioplastics regulations
2.3.1     Overview
2.3.2     United States
2.3.3     Europe
2.3.4     Asia-Pacific

3           BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET
3.1        BIOREFINERIES
3.2        BIO-BASED FEEDSTOCK AND LAND USE
3.3        PLANT-BASED
3.3.1     STARCH
3.3.1.1  Overview
3.3.1.2  Sources
3.3.1.3  Global production
3.3.1.4  Lysine
3.3.1.4.1           Source
3.3.1.4.2           Applications
3.3.1.4.3           Global production
3.3.1.5  Glucose
3.3.1.5.1           HMDA
3.3.1.5.1.1      Overview
3.3.1.5.1.2      Sources
3.3.1.5.1.3      Applications
3.3.1.5.1.4      Global production
3.3.1.5.2           1,5-diaminopentane (DA5)
3.3.1.5.2.1      Overview
3.3.1.5.2.2      Sources
3.3.1.5.2.3      Applications
3.3.1.5.2.4      Global production
3.3.1.5.3           Sorbitol
3.3.1.5.3.1      Isosorbide
3.3.1.5.3.1.1  Overview
3.3.1.5.3.1.2  Sources
3.3.1.5.3.1.3  Applications
3.3.1.5.3.1.4  Global production
3.3.1.5.4           Lactic acid
3.3.1.5.4.1      Overview
3.3.1.5.4.2      D-lactic acid
3.3.1.5.4.3      L-lactic acid
3.3.1.5.4.4      Lactide
3.3.1.5.5           Itaconic acid
3.3.1.5.5.1      Overview
3.3.1.5.5.2      Sources
3.3.1.5.5.3      Applications
3.3.1.5.5.4      Global production
3.3.1.5.6           3-HP
3.3.1.5.6.1      Overview
3.3.1.5.6.2      Sources
3.3.1.5.6.3      Applications
3.3.1.5.6.4      Global production
3.3.1.5.6.5      Acrylic acid
3.3.1.5.6.5.1  Overview
3.3.1.5.6.5.2  Applications
3.3.1.5.6.5.3  Global production
3.3.1.5.6.6      1,3-Propanediol (1,3-PDO)
3.3.1.5.6.6.1  Overview
3.3.1.5.6.6.2  Applications
3.3.1.5.6.6.3  Global production
3.3.1.5.7           Succinic Acid
3.3.1.5.7.1      Overview
3.3.1.5.7.2      Sources
3.3.1.5.7.3      Applications
3.3.1.5.7.4      Global production
3.3.1.5.7.5      1,4-Butanediol (1,4-BDO)
3.3.1.5.7.5.1  Overview
3.3.1.5.7.5.2  Applications
3.3.1.5.7.5.3  Global production
3.3.1.5.7.6      Tetrahydrofuran (THF)
3.3.1.5.7.6.1  Overview
3.3.1.5.7.6.2  Applications
3.3.1.5.7.6.3  Global production
3.3.1.5.8           Adipic acid
3.3.1.5.8.1      Overview
3.3.1.5.8.2      Applications
3.3.1.5.8.3      Caprolactame
3.3.1.5.8.3.1  Overview
3.3.1.5.8.3.2  Applications
3.3.1.5.8.3.3  Global production
3.3.1.5.9           Isobutanol
3.3.1.5.9.1      Overview
3.3.1.5.9.2      Sources
3.3.1.5.9.3      Applications
3.3.1.5.9.4      Global production
3.3.1.5.9.5      p-Xylene
3.3.1.5.9.5.1  Overview
3.3.1.5.9.5.2  Sources
3.3.1.5.9.5.3  Applications
3.3.1.5.9.5.4  Global production
3.3.1.5.9.5.5  Terephthalic acid
3.3.1.5.9.5.6  Overview
3.3.1.5.10        1,3 Proppanediol
3.3.1.5.10.1. Overview
3.3.1.5.10.2   Sources
3.3.1.5.10.3   Applications
3.3.1.5.10.4   Global production
3.3.1.5.11        Monoethylene glycol (MEG)
3.3.1.5.11.1   Overview
3.3.1.5.11.2   Sources
3.3.1.5.11.3   Applications
3.3.1.5.11.4   Global production
3.3.1.5.12        Ethanol
3.3.1.5.12.1   Overview
3.3.1.5.12.2   Sources
3.3.1.5.12.3   Applications
3.3.1.5.12.4   Global production
3.3.1.5.12.5   Ethylene
3.3.1.5.12.5.1 Overview
3.3.1.5.12.5.2 Applications
3.3.1.5.12.5.3 Global production
3.3.1.5.12.5.4 Propylene
3.3.1.5.12.5.5 Vinyl chloride
3.3.1.5.12.6   Methly methacrylate
3.3.2     SUGAR CROPS
3.3.2.1  Saccharose
3.3.2.1.1           Aniline
3.3.2.1.1.1      Overview
3.3.2.1.1.2      Applications
3.3.2.1.1.3      Global production
3.3.2.1.2           Fructose
3.3.2.1.2.1      Overview
3.3.2.1.2.2      Applications
3.3.2.1.2.3      Global production
3.3.2.1.2.4      5-Hydroxymethylfurfural (5-HMF)
3.3.2.1.2.4.1  Overview
3.3.2.1.2.4.2  Applications
3.3.2.1.2.4.3  Global production
3.3.2.1.2.5      5-Chloromethylfurfural (5-CMF)
3.3.2.1.2.5.1  Overview
3.3.2.1.2.5.2  Applications
3.3.2.1.2.5.3  Global production
3.3.2.1.2.6      Levulinic Acid
3.3.2.1.2.6.1  Overview
3.3.2.1.2.6.2  Applications
3.3.2.1.2.6.3  Global production
3.3.2.1.2.7      FDME
3.3.2.1.2.7.1  Overview
3.3.2.1.2.7.2  Applications
3.3.2.1.2.7.3  Global production
3.3.2.1.2.8      2,5-FDCA
3.3.2.1.2.8.1  Overview
3.3.2.1.2.8.2  Applications
3.3.2.1.2.8.3  Global production
3.3.3     LIGNOCELLULOSIC BIOMASS
3.3.3.1  Levoglucosenone
3.3.3.1.1           Overview
3.3.3.1.2           Applications
3.3.3.1.3           Global production
3.3.3.2 Hemicellulose
3.3.3.2.1           Overview
3.3.3.2.2           Biochemicals from hemicellulose
3.3.3.2.3           Global production
3.3.3.2.4           Furfural
3.3.3.2.4.1      Overview
3.3.3.2.4.2      Applications
3.3.3.2.4.3      Global production
3.3.3.2.4.4      Furfuyl alcohol
3.3.3.2.4.4.1  Overview
3.3.3.2.4.4.2  Applications
3.3.3.2.4.4.3  Global production
3.3.3.3 Lignin
3.3.3.3.1           Overview
3.3.3.3.2           Sources
3.3.3.3.3           Applications
3.3.3.3.3.1      Aromatic compounds
3.3.3.3.3.1.1  Benzene, toluene and xylene
3.3.3.3.3.1.2  Phenol and phenolic resins
3.3.3.3.3.1.3  Vanillin
3.3.3.3.3.2      Polymers
3.3.3.3.4           Global production
3.3.4     PLANT OILS
3.3.4.1  Overview
3.3.4.2  Glycerol
3.3.4.2.1           Overview
3.3.4.2.2           Applications
3.3.4.2.3           Global production
3.3.4.2.4           MPG
3.3.4.2.4.1      Overview
3.3.4.2.4.2      Applications
3.3.4.2.4.3      Global production
3.3.4.2.5           ECH
3.3.4.2.5.1      Overview
3.3.4.2.5.2      Applications
3.3.4.2.5.3      Global production
3.3.4.3  Fatty acids
3.3.4.3.1           Overview
3.3.4.3.2           Applications
3.3.4.3.3           Global production
3.3.4.4  Castor oil
3.3.4.4.1           Overview
3.3.4.4.2           Sebacic acid
3.3.4.4.2.1      Overview
3.3.4.4.2.2      Applications
3.3.4.4.2.3      Global production
3.3.4.4.3           11-Aminoundecanoic acid (11-AA)
3.3.4.4.3.1      Overview
3.3.4.4.3.2      Applications
3.3.4.4.3.3      Global production
3.3.4.5  Dodecanedioic acid (DDDA)
3.3.4.5.1           Overview
3.3.4.5.2           Applications
3.3.4.5.3           Global production
3.3.4.6  Pentamethylene diisocyanate
3.3.4.6.1           Overview
3.3.4.6.2           Applications
3.3.4.6.3           Global production
3.3.5     NON-EDIBIBLE MILK
3.3.5.1  Casein
3.3.5.1.1           Overview
3.3.5.1.2           Applications
3.3.5.1.3           Global production
3.4        WASTE
3.4.1     Food waste
3.4.1.1  Overview
3.4.1.2  Products and applications
3.4.1.2.1           Global production
3.4.2     Agricultural waste
3.4.2.1  Overview
3.4.2.2  Products and applications
3.4.2.3  Global production
3.4.3     Forestry waste
3.4.3.1  Overview
3.4.3.2  Products and applications
3.4.3.3  Global production
3.4.4     Aquaculture/fishing waste
3.4.4.1  Overview
3.4.4.2  Products and applications
3.4.4.3  Global production
3.4.5     Municipal solid waste
3.4.5.1  Overview
3.4.5.2  Products and applications
3.4.5.3  Global production
3.4.6     Industrial waste
3.4.6.1  Overview
3.4.7     Waste oils
3.4.7.1  Overview
3.4.7.2  Products and applications
3.4.7.3  Global production
3.5        MICROBIAL & MINERAL SOURCES
3.5.1     Microalgae
3.5.1.1  Overview
3.5.1.2  Products and applications
3.5.1.3  Global production
3.5.2     Macroalgae
3.5.2.1  Overview
3.5.2.2  Products and applications
3.5.2.3  Global production
3.5.3     Mineral sources
3.5.3.1  Overview
3.5.3.2  Products and applications
3.6        GASEOUS
3.6.1     Biogas
3.6.1.1  Overview
3.6.1.2  Products and applications
3.6.1.3  Global production
3.6.2     Syngas
3.6.2.1  Overview
3.6.2.2  Products and applications
3.6.2.3  Global production
3.6.3     Off gases - fermentation CO2, CO
3.6.3.1  Overview
3.6.3.2  Products and applications

4           BIO-BASED POLYMERS
4.1        BIO-BASED OR RENEWABLE PLASTICS
4.1.1     Drop-in bio-based plastics
4.1.2     Novel bio-based plastics
4.2        BIODEGRADABLE AND COMPOSTABLE PLASTICS
4.2.1     Biodegradability
4.2.2     Compostability
4.3        TYPES
4.4        KEY MARKET PLAYERS
4.5        SYNTHETIC BIO-BASED POLYMERS
4.5.1     Aliphatic polycarbonates (APC) - cyclic and linear
4.5.1.1  Market analysis
4.5.1.2  Production
4.5.1.3  Applications
4.5.1.4  Producers
4.5.2     Polylactic acid (Bio-PLA)
4.5.2.1  What is polylactic acid?
4.5.2.2  Market analysis
4.5.2.3  Applications
4.5.2.4  Production
4.5.2.5  Biomanufacturing of lactic acid (C3H6O3)
4.5.2.6  Bacterial fermentation
4.5.2.7  PLA end-of-life
4.5.2.8  Producers and production capacities, current and planned
4.5.2.8.1           Lactic acid producers and production capacities
4.5.2.8.2           PLA producers and production capacities
4.5.2.8.3           Polylactic acid (Bio-PLA) production 2019-2036 (1,000 tonnes)
4.5.3     Polyethylene terephthalate (Bio-PET)
4.5.3.1  Market analysis
4.5.3.2  Bio-based MEG and PET
4.5.3.2.1           Production
4.5.3.2.2           Applications
4.5.3.3  Producers and production capacities
4.5.3.4  Polyethylene terephthalate (Bio-PET) production 2019-2036 (1,000 tonnes)
4.5.4     Polytrimethylene terephthalate (Bio-PTT)
4.5.4.1  Market analysis
4.5.4.2  Producers and production capacities
4.5.4.3  Polytrimethylene terephthalate (PTT) production 2019-2036 (1,000 tonnes)
4.5.5     Polyethylene furanoate (Bio-PEF)
4.5.5.1  Market analysis
4.5.5.2  Comparative properties to PET
4.5.5.3  Producers and production capacities
4.5.5.3.1           FDCA and PEF producers and production capacities
4.5.5.3.2           Polyethylene furanoate (Bio-PEF) production 2019-2036 (1,000 tonnes).
4.5.6     Polyamides (Bio-PA)
4.5.6.1  Market analysis
4.5.6.2  Producers and production capacities
4.5.6.3  Polyamides (Bio-PA) production 2019-2036 (1,000 tonnes)
4.5.7     Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
4.5.7.1  Market analysis
4.5.7.2  Producers and production capacities
4.5.7.3  Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2036 (1,000 tonnes)
4.5.8     Polybutylene succinate (PBS) and copolymers
4.5.8.1  Market analysis
4.5.8.2  Producers and production capacities
4.5.8.3  Polybutylene succinate (PBS) production 2019-2036 (1,000 tonnes)
4.5.9     Polyethylene (Bio-PE)
4.5.9.1  Market analysis
4.5.9.2  Producers and production capacities
4.5.9.3  Polyethylene (Bio-PE) production 2019-2036 (1,000 tonnes).
4.5.10   Polypropylene (Bio-PP)
4.5.10.1            Market analysis
4.5.10.2            Producers and production capacities
4.5.10.3            Polypropylene (Bio-PP) production 2019-2036 (1,000 tonnes)
4.5.11  Superabsorbent polymers
4.5.11.1            Market analysis
4.5.11.2            Production
4.5.11.3            Applications
4.5.11.4            Producers
4.6        NATURAL BIO-BASED POLYMERS
4.6.1     Polyhydroxyalkanoates (PHA)
4.6.1.1  Technology description
4.6.1.2  Types
4.6.1.2.1           PHB
4.6.1.2.2           PHBV
4.6.1.3  Synthesis and production processes
4.6.1.4  Market analysis
4.6.1.5  Commercially available PHAs
4.6.1.6  Markets for PHAs
4.6.1.6.1           Packaging
4.6.1.6.2           Cosmetics
4.6.1.6.2.1      PHA microspheres
4.6.1.6.3           Medical
4.6.1.6.3.1      Tissue engineering
4.6.1.6.3.2      Drug delivery
4.6.1.6.4           Agriculture
4.6.1.6.4.1      Mulch film
4.6.1.6.4.2      Grow bags
4.6.1.7  Producers and production capacities
4.6.1.8  PHA production capacities 2019-2036 (1,000 tonnes)
4.6.2     Cellulose
4.6.2.1  Cellulose acetate (CA)
4.6.2.1.1           Market analysis
4.6.2.1.2           Production
4.6.2.1.3           Applications
4.6.2.1.4           Producers
4.6.2.2  Microfibrillated cellulose (MFC)
4.6.2.2.1           Market analysis
4.6.2.2.2           Producers and production capacities
4.6.2.3  Nanocellulose
4.6.2.3.1           Cellulose nanocrystals
4.6.2.3.1.1      Synthesis
4.6.2.3.1.2      Properties
4.6.2.3.1.3      Production
4.6.2.3.1.4      Applications
4.6.2.3.1.5      Market analysis
4.6.2.3.1.6      Producers and production capacities
4.6.2.3.2           Cellulose nanofibers
4.6.2.3.2.1      Applications
4.6.2.3.2.2      Market analysis
4.6.2.3.2.3      Producers and production capacities
4.6.2.3.3           Bacterial Nanocellulose (BNC)
4.6.2.3.3.1      Production
4.6.2.3.3.2      Applications
4.6.3     Protein-based bio-polymers
4.6.3.1  Types, applications and producers
4.6.3.2  Casein polymers
4.6.3.2.1           Market analysis
4.6.3.2.2           Production
4.6.3.2.3           Applications
4.6.3.2.4           Producers
4.6.4     Algal and fungal
4.6.4.1  Algal
4.6.4.1.1           Advantages
4.6.4.1.2           Production
4.6.4.1.3           Producers
4.6.4.2  Mycelium
4.6.4.2.1           Properties
4.6.4.2.2           Applications
4.6.4.2.3           Commercialization
4.6.5     Chitosan
4.6.5.1  Technology description
4.7        NATURAL FIBERS
4.7.1     Manufacturing method, matrix materials and applications of natural fibers
4.7.2     Advantages of natural fibers
4.7.3     Commercially available next-gen natural fiber  products
4.7.4     Market drivers for next-gen natural fibers
4.7.5     Challenges
4.7.6     Plants (cellulose, lignocellulose)
4.7.6.1  Seed fibers
4.7.6.1.1           Cotton
4.7.6.1.1.1      Production volumes 2018-2036
4.7.6.1.2           Kapok
4.7.6.1.2.1      Production volumes 2018-2036
4.7.6.1.3           Luffa
4.7.6.2  Bast fibers
4.7.6.2.1           Jute
4.7.6.2.2           Production volumes 2018-2036
4.7.6.2.2.1      Hemp
4.7.6.2.2.2      Production volumes 2018-2036
4.7.6.2.3           Flax
4.7.6.2.3.1      Production volumes 2018-2036
4.7.6.2.4           Ramie
4.7.6.2.4.1      Production volumes 2018-2036
4.7.6.2.5           Kenaf
4.7.6.2.5.1      Production volumes 2018-2036
4.7.6.3  Leaf fibers
4.7.6.3.1           Sisal
4.7.6.3.1.1      Production volumes 2018-2036
4.7.6.3.2           Abaca
4.7.6.3.2.1      Production volumes 2018-2036
4.7.6.4  Fruit fibers
4.7.6.4.1           Coir
4.7.6.4.1.1      Production volumes 2018-2036
4.7.6.4.2           Banana
4.7.6.4.2.1      Production volumes 2018-2036
4.7.6.4.3           Pineapple
4.7.6.5  Stalk fibers from agricultural residues
4.7.6.5.1           Rice fiber
4.7.6.5.2           Corn
4.7.6.6  Cane, grasses and reed
4.7.6.6.1           Switch grass
4.7.6.6.2           Sugarcane (agricultural residues)
4.7.6.6.3           Bamboo
4.7.6.6.3.1      Production volumes 2018-2036
4.7.6.6.4           Fresh grass (green biorefinery)
4.7.7     Animal (fibrous protein)
4.7.7.1  Wool
4.7.7.1.1           Alternative wool materials
4.7.7.1.2           Producers
4.7.7.2  Silk fiber
4.7.7.2.1           Alternative silk materials
4.7.7.2.1.1      Producers
4.7.7.3  Leather
4.7.7.3.1           Alternative leather materials
4.7.7.3.1.1      Producers
4.7.7.4  Fur
4.7.7.4.1           Producers
4.7.7.5  Down
4.7.7.5.1           Alternative down materials
4.7.7.5.1.1      Producers
4.7.8     Markets for natural fibers
4.7.8.1  Composites
4.7.8.2  Applications
4.7.8.3  Natural fiber injection moulding compounds
4.7.8.3.1           Properties
4.7.8.3.2           Applications
4.7.8.4  Non-woven natural fiber mat composites
4.7.8.4.1           Automotive
4.7.8.4.2           Applications
4.7.8.5  Aligned natural fiber-reinforced composites
4.7.8.6  Natural fiber biobased polymer compounds
4.7.8.7  Natural fiber biobased polymer non-woven mats
4.7.8.7.1           Flax
4.7.8.7.2           Kenaf
4.7.8.8  Natural fiber thermoset bioresin composites
4.7.8.9  Aerospace
4.7.8.9.1           Market overview
4.7.8.10            Automotive
4.7.8.10.1        Market overview
4.7.8.10.2        Applications of natural fibers
4.7.8.11            Building/construction
4.7.8.11.1        Market overview
4.7.8.11.2        Applications of natural fibers
4.7.8.12            Sports and leisure
4.7.8.12.1        Market overview
4.7.8.13            Textiles
4.7.8.13.1        Market overview
4.7.8.13.2        Consumer apparel
4.7.8.13.3        Geotextiles
4.7.8.14            Packaging
4.7.8.14.1        Market overview
4.7.9     Global production of natural fibers
4.7.9.1  Overall global fibers market
4.7.9.2  Plant-based fiber production
4.7.9.3  Animal-based natural fiber production
4.8        LIGNIN
4.8.1     Introduction
4.8.1.1  What is lignin?
4.8.1.1.1           Lignin structure
4.8.1.2  Types of lignin
4.8.1.2.1           Sulfur containing lignin
4.8.1.2.2           Sulfur-free lignin from biorefinery process
4.8.1.3  Properties
4.8.1.4  The lignocellulose biorefinery
4.8.1.5  Markets and applications
4.8.1.6  Challenges for using lignin
4.8.2     Lignin production processes
4.8.2.1  Lignosulphonates
4.8.2.2  Kraft Lignin
4.8.2.2.1           LignoBoost process
4.8.2.2.2           LignoForce method
4.8.2.2.3           Sequential Liquid Lignin Recovery and Purification
4.8.2.2.4           A-Recovery+
4.8.2.3  Soda lignin
4.8.2.4  Biorefinery lignin
4.8.2.4.1           Commercial and pre-commercial biorefinery lignin production facilities and  processes
4.8.2.5  Organosolv lignins
4.8.2.6  Hydrolytic lignin
4.8.3     Markets for lignin
4.8.3.1  Market drivers and trends for lignin
4.8.3.2  Production capacities
4.8.3.2.1           Technical lignin availability (dry ton/y)
4.8.3.2.2           Biomass conversion (Biorefinery)
4.8.3.3  Estimated consumption of lignin
4.8.3.4  Prices
4.8.3.5  Heat and power energy
4.8.3.6  Pyrolysis and syngas
4.8.3.7  Aromatic compounds
4.8.3.7.1           Benzene, toluene and xylene
4.8.3.7.2           Phenol and phenolic resins
4.8.3.7.3           Vanillin
4.8.3.8  Plastics and polymers

5           MARKETS FOR BIOPLASTICS
5.1        Packaging (Flexible and Rigid)
5.1.1     Processes for bioplastics in packaging
5.1.2     Applications
5.1.3     Flexible packaging
5.1.3.1  Production volumes 2019-2036
5.1.4     Rigid packaging
5.1.4.1  Production volumes 2019-2036
5.2        Consumer Goods
5.2.1     Applications
5.2.2     Production volumes 2019-2036
5.3        Automotive
5.3.1     Applications
5.3.2     Production volumes 2019-2036
5.4        Building and Construction
5.4.1     Applications
5.4.2     Production volumes 2019-2036
5.5        Textiles and Fibers
5.5.1     Apparel
5.5.2     Footwear
5.5.3     Medical textiles
5.5.4     Production volumes 2019-2036
5.6        Electronics
5.6.1     Applications
5.6.2     Production volumes 2019-2036
5.7        Agriculture and Horticulture
5.7.1     Production volumes 2019-2036
5.8        Production of Biopolymers, by region
5.8.1     North America
5.8.2     Europe
5.8.3     Asia-Pacific
5.8.3.1  China
5.8.3.2  Japan
5.8.3.3  Thailand
5.8.3.4  Indonesia
5.8.4     Latin America

6           COMPANY PROFILES  (575 company profiles)
7           APPENDIX
7.1        Research Methodology
7.2        Key terms and definitions

8           REFERENCES
LIST OF TABLES
Table 1. Bio-based and Biodegradable vs. Non-biodegradable Polymers.
Table 2. Capacity Utilization Rates by Polymer Type.
Table 3. Next Generation Bio-based Polymers.
Table 4. Novel Feedstock Sources
Table 5. Global bioplastics production capacities 2024.
Table 6. Bioplastics global total capacity forecast 2025-2036.
Table 7. Bioplastics Production capacities by region 2024-2036.
Table 8. Global bio-based polymers market, by type 2020-2036 (revenues).
Table 9. Global bio-based polymers market, by type 2020-2036 (metric tonnes).
Table 10. Life Cycle Assessment of Bio-based Polymers.
Table 11. Carbon Footprint Comparison with Fossil-based Alternatives
Table 12. Bioplastic feedstocks,
Table 13. Bioplastics regulations around the world
Table 14. Plant-based feedstocks and biochemicals produced.
Table 15. Waste-based feedstocks and biochemicals produced.
Table 16. Microbial and mineral-based feedstocks and biochemicals produced.
Table 17. Common starch sources that can be used as feedstocks for producing biochemicals.
Table 18. Common lysine sources that can be used as feedstocks for producing biochemicals.
Table 19. Applications of  lysine as a feedstock for biochemicals.
Table 20. HDMA sources that can be used as feedstocks for producing biochemicals.
Table 21. Applications of bio-based HDMA.
Table 22. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).
Table 23. Applications of DN5.
Table 24. Biobased feedstocks for isosorbide.
Table 25. Applications of bio-based isosorbide.
Table 26. Lactide applications.
Table 27. Biobased feedstock sources for itaconic acid.
Table 28. Applications of bio-based itaconic acid.
Table 29. Biobased feedstock sources for 3-HP.
Table 30. Applications of 3-HP.
Table 31. Applications of bio-based acrylic acid.
Table 32. Applications of bio-based 1,3-Propanediol (1,3-PDO).
Table 33. Biobased feedstock sources for Succinic acid.
Table 34. Applications of succinic acid.
Table 35. Applications of bio-based 1,4-Butanediol (BDO).
Table 36. Applications of bio-based Tetrahydrofuran (THF).
Table 37. Applications of bio-based adipic acid.
Table 38. Applications of bio-based caprolactam.
Table 39. Biobased feedstock sources for isobutanol.
Table 40. Applications of bio-based isobutanol.
Table 41. Biobased feedstock sources for p-Xylene.
Table 42. Applications of bio-based p-Xylene.
Table 43. Applications of bio-based Terephthalic acid (TPA).
Table 44. Biobased feedstock sources for 1,3 Proppanediol.
Table 45. Applications of bio-based 1,3 Proppanediol.
Table 46. Biobased feedstock sources for MEG.
Table 47. Applications of bio-based MEG.
Table 48. Biobased MEG producers capacities.
Table 49. Biobased feedstock sources for ethanol.
Table 50. Applications of bio-based ethanol.
Table 51. Applications of bio-based ethylene.
Table 52. Applications of bio-based propylene.
Table 53. Applications of bio-based vinyl chloride.
Table 54. Applications of bio-based Methly methacrylate.
Table 55. Applications of bio-based aniline.
Table 56. Applications of biobased fructose.
Table 57. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF).
Table 58. Applications of 5-(Chloromethyl)furfural (CMF).
Table 59. Applications of Levulinic acid.
Table 60. Markets and applications for bio-based FDME.
Table 61. Applications of FDCA.
Table 62. Markets and applications for bio-based levoglucosenone.
Table 63. Biochemicals derived from hemicellulose
Table 64. Markets and applications for bio-based hemicellulose
Table 65. Markets and applications for bio-based furfuryl alcohol.
Table 66. Commercial and pre-commercial biorefinery lignin production facilities and processes
Table 67. Lignin aromatic compound products.
Table 68. Prices of benzene, toluene, xylene and their derivatives.
Table 69. Lignin products in polymeric materials.
Table 70. Application of lignin in plastics and composites.
Table 71. Markets and applications for bio-based glycerol.
Table 72. Markets and applications for Bio-based MPG.
Table 73. Markets and applications: Bio-based ECH.
Table 74. Mineral source products and applications.
Table 75. Type of biodegradation.
Table 76. Advantages and disadvantages of biobased plastics compared to conventional plastics.
Table 77. Types of Bio-based and/or Biodegradable Plastics, applications.
Table 78. Key market players by Bio-based and/or Biodegradable Plastic types.
Table 79. Aliphatic polycarbonates (APC) - cyclic and linear production 2019-2036 (1,000 tonnes)
Table 80. Aliphatic polycarbonates (APC) - cyclic and linear Applications.
Table 81. Aliphatic polycarbonates (APC) producers.
Table 82. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.
Table 83. Lactic acid producers and production capacities.
Table 84. PLA producers and production capacities.
Table 85. Planned PLA capacity expansions in China.
Table 86. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.
Table 87. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
Table 88. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.
Table 89. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.
Table 90. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.
Table 91. PEF vs. PET.
Table 92. FDCA and PEF producers.
Table 93. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.
Table 94. Leading Bio-PA producers production capacities.
Table 95. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.
Table 96. Leading PBAT producers, production capacities and brands.
Table 97. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.
Table 98. Leading PBS producers and production capacities.
Table 99. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.
Table 100. Leading Bio-PE producers.
Table 101. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.
Table 102. Leading Bio-PP producers and capacities.
Table 103. Superabsorbent polymers production 2019-2036 (1,000 tonnes)
Table 104. Superabsorbent polymers Applications.
Table 105. Superabsorbent polymers producers.
Table 106.Types of PHAs and properties.
Table 107. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.
Table 108. Polyhydroxyalkanoate (PHA) extraction methods.
Table 109. Polyhydroxyalkanoates (PHA) market analysis.
Table 110. Commercially available PHAs.
Table 111. Markets and applications for PHAs.
Table 112. Applications, advantages and disadvantages of PHAs in packaging.
Table 113. Polyhydroxyalkanoates (PHA) producers.
Table 114. Cellulose acetate (CA) production 2019-2036 (1,000 tonnes)
Table 115. Cellulose acetate (CA) applications.
Table 116. Cellulose acetate (CA) producers.
Table 117. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.
Table 118. Leading MFC producers and capacities.
Table 119. Synthesis methods for cellulose nanocrystals (CNC).
Table 120. CNC sources, size and yield.
Table 121. CNC properties.
Table 122. Mechanical properties of CNC and other reinforcement materials.
Table 123. Applications of nanocrystalline cellulose (NCC).
Table 124. Cellulose nanocrystals analysis.
Table 125: Cellulose nanocrystal production capacities and production process, by producer.
Table 126. Applications of cellulose nanofibers (CNF).
Table 127. Cellulose nanofibers market analysis.
Table 128. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.
Table 129. Applications of bacterial nanocellulose (BNC).
Table 130. Types of protein based-bioplastics, applications and companies.
Table 131. Casein polymers production 2019-2036 (1,000 tonnes)
Table 132. Casein polymers applications.
Table 133. Casein polymers producers.
Table 134. Types of algal and fungal based-bioplastics, applications and companies.
Table 135. Overview of alginate-description, properties, application and market size.
Table 136. Companies developing algal-based bioplastics.
Table 137. Overview of mycelium fibers-description, properties, drawbacks and applications.
Table 138. Companies developing mycelium-based bioplastics.
Table 139. Overview of chitosan-description, properties, drawbacks and applications.
Table 140. Types of next-gen natural fibers.
Table 141. Application, manufacturing method, and matrix materials of natural fibers.
Table 142. Typical properties of natural fibers.
Table 143. Commercially available next-gen natural fiber products.
Table 144. Market drivers for natural fibers.
Table 145. Overview of cotton fibers-description, properties, drawbacks and applications.
Table 146. Overview of kapok fibers-description, properties, drawbacks and applications.
Table 147. Overview of luffa fibers-description, properties, drawbacks and applications.
Table 148. Overview of jute fibers-description, properties, drawbacks and applications.
Table 149. Overview of hemp fibers-description, properties, drawbacks and applications.
Table 150. Overview of flax fibers-description, properties, drawbacks and applications.
Table 151. Overview of ramie fibers- description, properties, drawbacks and applications.
Table 152. Overview of kenaf fibers-description, properties, drawbacks and applications.
Table 153. Overview of sisal leaf fibers-description, properties, drawbacks and applications.
Table 154. Overview of abaca fibers-description, properties, drawbacks and applications.
Table 155. Overview of coir fibers-description, properties, drawbacks and applications.
Table 156. Overview of banana fibers-description, properties, drawbacks and applications.
Table 157. Overview of pineapple fibers-description, properties, drawbacks and applications.
Table 158. Overview of rice fibers-description, properties, drawbacks and applications.
Table 159. Overview of corn fibers-description, properties, drawbacks and applications.
Table 160. Overview of switch grass fibers-description, properties and applications.
Table 161. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.
Table 162. Overview of bamboo fibers-description, properties, drawbacks and applications.
Table 163. Overview of wool fibers-description, properties, drawbacks and applications.
Table 164. Alternative wool materials producers.
Table 165. Overview of silk fibers-description, properties, application and market size.
Table 166. Alternative silk materials producers.
Table 167. Alternative leather materials producers.
Table 168. Next-gen fur producers.
Table 169. Alternative down materials producers.
Table 170. Applications of natural fiber composites.
Table 171. Typical properties of short natural fiber-thermoplastic composites.
Table 172. Properties of non-woven natural fiber mat composites.
Table 173. Properties of aligned natural fiber composites.
Table 174. Properties of natural fiber-bio-based polymer compounds.
Table 175. Properties of natural fiber-bio-based polymer non-woven mats.
Table 176. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use.
Table 177. Natural fiber-reinforced polymer composite in the automotive market.
Table 178. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use.
Table 179. Applications of natural fibers in the automotive industry.
Table 180. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.
Table 181. Applications of natural fibers in the building/construction sector.
Table 182. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.
Table 183. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.
Table 184. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use.
Table 185. Technical lignin types and applications.
Table 186. Classification of technical lignins.
Table 187. Lignin content of selected biomass.
Table 188. Properties of lignins and their applications.
Table 189. Example markets and applications for lignin.
Table 190. Processes for lignin production.
Table 191. Biorefinery feedstocks.
Table 192. Comparison of pulping and biorefinery lignins.
Table 193. Commercial and pre-commercial biorefinery lignin production facilities and  processes
Table 194. Market drivers and trends for lignin.
Table 195. Production capacities of technical lignin producers.
Table 196. Production capacities of biorefinery lignin producers.
Table 197. Estimated consumption of lignin, 2019-2036 (000 MT).
Table 198. Prices of benzene, toluene, xylene and their derivatives.
Table 199. Application of lignin in plastics and polymers.
Table 200. Processes for bioplastics in packaging.
Table 201. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.
Table 202. Typical applications for bioplastics in flexible packaging.
Table 203. Typical applications for bioplastics in rigid packaging.
Table 204. Global production capacities of biobased and sustainable plastics in 2019-2036, by region, 1,000 tonnes.
Table 205. Biobased and sustainable plastics producers in North America.
Table 206. Biobased and sustainable plastics producers in Europe.
Table 207. Biobased and sustainable plastics producers in Asia-Pacific.
Table 208. Biobased and sustainable plastics producers in Latin America.
Table 209. Lactips plastic pellets.
Table 210. Oji Holdings CNF products.

LIST OF FIGURES
Figure 1. Plastics production 1950-2024.
Figure 2. Bioplastics global total capacity forecast 2025-2036.
Figure 3. Bioplastics Production capacities by region 2024-2036.
Figure 4. Global bio-based polymers market, by type 2020-2036 (revenues).
Figure 5. Global bio-based polymers market, by type 2020-2036 (metric tonnes).
Figure 6. Schematic of biorefinery processes.
Figure 7. Global production of starch for biobased chemicals and intermediates, 2018-2036 (million metric tonnes).
Figure 8. Global production of biobased lysine, 2018-2036 (metric tonnes).
Figure 9. Global glucose production for bio-based chemicals and intermediates 2018-2036 (million metric tonnes).
Figure 10. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes.
Figure 11. Global production of bio-based DN5, 2018-2036 (metric tonnes).
Figure 12. Global production of bio-based isosorbide, 2018-2036 (metric tonnes).
Figure 13. L-lactic acid (L-LA) production, 2018-2036 (metric tonnes).
Figure 14. Global lactide production, 2018-2036 (metric tonnes).
Figure 15. Global production of bio-itaconic acid, 2018-2036 (metric tonnes).
Figure 16. Global production of 3-HP,  2018-2036 (metric tonnes).
Figure 17. Global production of bio-based acrylic acid,  2018-2036 (metric tonnes).
Figure 18. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2036 (metric tonnes).
Figure 19. Global production of bio-based Succinic acid, 2018-2036 (metric tonnes).
Figure 20. Global production of 1,4-Butanediol (BDO), 2018-2036 (metric tonnes).
Figure 21. Global production of bio-based tetrahydrofuran (THF), 2018-2036 (metric tonnes).
Figure 22. Overview of Toray process.
Figure 23. Global production of bio-based caprolactam, 2018-2036 (metric tonnes).
Figure 24. Global production of bio-based isobutanol, 2018-2036 (metric tonnes).
Figure 25. Global production of bio-based p-xylene, 2018-2036 (metric tonnes).
Figure 26. Global production of biobased terephthalic acid (TPA), 2018-2036 (metric tonnes).
Figure 27. Global production of biobased 1,3 Proppanediol, 2018-2036 (metric tonnes).
Figure 28. Global production of biobased MEG, 2018-2036 (metric tonnes).
Figure 29. Global production of biobased ethanol, 2018-2036 (million metric tonnes).
Figure 30. Global production of biobased ethylene, 2018-2036 (million metric tonnes).
Figure 31. Global production of biobased propylene, 2018-2036 (metric tonnes).
Figure 32. Global production of biobased vinyl chloride, 2018-2036 (metric tonnes).
Figure 33. Global production of bio-based Methly methacrylate, 2018-2036 (metric tonnes).
Figure 34. Global production of biobased aniline, 2018-2036 (metric tonnes).
Figure 35. Global production of biobased fructose, 2018-2036 (metric tonnes).
Figure 36. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2036 (metric tonnes).
Figure 37. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2036 (metric tonnes).
Figure 38. Global production of biobased Levulinic acid, 2018-2036 (metric tonnes).
Figure 39. Global production of biobased FDME, 2018-2036 (metric tonnes).
Figure 40. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2036 (metric tonnes).
Figure 41. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes.
Figure 42. Global production of hemicellulose, 2018-2036 (metric tonnes).
Figure 43. Global production of biobased furfural, 2018-2036 (metric tonnes).
Figure 44. Global production of biobased furfuryl alcohol, 2018-2036 (metric tonnes).
Figure 45. Schematic of WISA plywood home.
Figure 46. Global production of biobased lignin, 2018-2036 (metric tonnes).
Figure 47. Global production of biobased glycerol, 2018-2036 (metric tonnes).
Figure 48. Global production of Bio-MPG, 2018-2036 (metric tonnes).
Figure 49. Global production of biobased ECH, 2018-2036 (metric tonnes).
Figure 50. Global production of biobased fatty acids, 2018-2036 (million metric tonnes).
Figure 51. Global production of biobased sebacic acid, 2018-2036 (metric tonnes).
Figure 52. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2036 (metric tonnes).
Figure 53. Global production of biobased Dodecanedioic acid (DDDA), 2018-2036 (metric tonnes).
Figure 54. Global production of biobased Pentamethylene diisocyanate, 2018-2036 (metric tonnes).
Figure 55. Global production of biobased casein, 2018-2036 (metric tonnes).
Figure 56. Global production of food waste for biochemicals, 2018-2036 (million metric tonnes).
Figure 57. Global production of agricultural waste for biochemicals, 2018-2036 (million metric tonnes).
Figure 58. Global production of forestry waste for biochemicals, 2018-2036 (million metric tonnes).
Figure 59. Global production of aquaculture/fishing waste for biochemicals, 2018-2036 (million metric tonnes).
Figure 60. Global production of municipal solid waste for biochemicals, 2018-2036 (million metric tonnes).
Figure 61. Global production of waste oils for biochemicals, 2018-2036 (million metric tonnes).
Figure 62. Global microalgae production, 2018-2036 (million metric tonnes).
Figure 63. Global macroalgae production, 2018-2036 (million metric tonnes).
Figure 64. Global production of biogas, 2018-2036 (billion m3).
Figure 65. Global production of syngas, 2018-2036 (billion m3).
Figure 66.  Coca-Cola PlantBottle®.
Figure 67. Interrelationship between conventional, bio-based and biodegradable plastics.
Figure 68. PLA production process.
Figure 69. Polylactic acid (Bio-PLA) production 2019-2036 (1,000 tonnes).
Figure 70. Polyethylene terephthalate (Bio-PET) production 2019-2036 (1,000 tonnes)
Figure 71. Polytrimethylene terephthalate (PTT) production 2019-2036 (1,000 tonnes).
Figure 72. Production capacities of Polyethylene furanoate (PEF) to 2025.
Figure 73. Polyethylene furanoate (Bio-PEF) production 2019-2036 (1,000 tonnes).
Figure 74. Polyamides (Bio-PA) production 2019-2036 (1,000 tonnes).
Figure 75. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2036 (1,000 tonnes).
Figure 76. Polybutylene succinate (PBS) production 2019-2036 (1,000 tonnes).
Figure 77. Polyethylene (Bio-PE) production 2019-2036 (1,000 tonnes).
Figure 78. Polypropylene (Bio-PP) production capacities 2019-2036 (1,000 tonnes).
Figure 79. PHA family.
Figure 80. PHA production capacities 2019-2036 (1,000 tonnes).
Figure 81. TEM image of cellulose nanocrystals.
Figure 82. CNC preparation.
Figure 83. Extracting CNC from trees.
Figure 84. CNC slurry.
Figure 85. CNF gel.
Figure 86. Bacterial nanocellulose shapes
Figure 87. BLOOM masterbatch from Algix.
Figure 88. Typical structure of mycelium-based foam.
Figure 89. Commercial mycelium composite construction materials.
Figure 90. Types of natural fibers.
Figure 91. Absolut natural based fiber bottle cap.
Figure 92. Adidas algae-ink tees.
Figure 93. Carlsberg natural fiber beer bottle.
Figure 94. Miratex watch bands.
Figure 95. Adidas Made with Nature Ultraboost 22.
Figure 96. PUMA RE:SUEDE sneaker
Figure 97. Cotton production volume 2018-2036 (Million MT).
Figure 98. Kapok production volume 2018-2036 (MT).
Figure 99.  Luffa cylindrica fiber.
Figure 100. Jute production volume 2018-2036 (Million MT).
Figure 101. Hemp fiber production volume 2018-2036 ( MT).
Figure 102. Flax fiber production volume 2018-2036 (MT).
Figure 103. Ramie fiber production volume 2018-2036 (MT).
Figure 104. Kenaf fiber production volume 2018-2036 (MT).
Figure 105. Sisal fiber production volume 2018-2036 (MT).
Figure 106. Abaca fiber production volume 2018-2036 (MT).
Figure 107. Coir fiber production volume 2018-2036 (MILLION MT).
Figure 108. Banana fiber production volume 2018-2036 (MT).
Figure 109. Pineapple fiber.
Figure 110. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019.
Figure 111. Bamboo fiber production volume 2018-2036 (MILLION MT).
Figure 112. Conceptual landscape of next-gen leather materials.
Figure 113. Hemp fibers combined with PP in car door panel.
Figure 114. Car door produced from Hemp fiber.
Figure 115. Mercedes-Benz components containing natural fibers.
Figure 116. AlgiKicks sneaker, made with the Algiknit biopolymer gel.
Figure 117. Coir mats for erosion control.
Figure 118. Global fiber production in 2024, by fiber type, million MT and %.
Figure 119. Global fiber production (million MT) to 2020-2036.
Figure 120. Plant-based fiber production 2018-2036, by fiber type, MT.
Figure 121. Animal based fiber production 2018-2036, by fiber type, million MT.
Figure 122. High purity lignin.
Figure 123. Lignocellulose architecture.
Figure 124. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.
Figure 125. The lignocellulose biorefinery.
Figure 126. LignoBoost process.
Figure 127. LignoForce system for lignin recovery from black liquor.
Figure 128. Sequential liquid-lignin recovery and purification (SLPR) system.
Figure 129. A-Recovery+ chemical recovery concept.
Figure 130.  Schematic of a biorefinery for production of carriers and chemicals.
Figure 131. Organosolv lignin.
Figure 132. Hydrolytic lignin powder.
Figure 133. Estimated consumption of lignin, 2019-2036 (000 MT).
Figure 134. Global production capacities for bioplastics by end user market 2019-2036, 1,000 tonnes.
Figure 135. PHA bioplastics products.
Figure 136. The global market for bio-based polymers for flexible packaging 2019-2033 (1,000 tonnes).
Figure 137. Production volumes for bio-based polymers for rigid packaging, 2019-2033 (1,000 tonnes).
Figure 138. Global production for bio-based polymers in consumer goods 2019-2036, in 1,000 tonnes.
Figure 139. Global production capacities for bio-based polymers in automotive 2019-2036, in 1,000 tonnes.
Figure 140. Global production volumes for bio-based polymers in building and construction 2019-2036, in 1,000 tonnes.
Figure 141. Global production volumes for bio-based polymers in textiles and fibers 2019-2036, in 1,000 tonnes.
Figure 142. Global production volumes for bio-based polymers in electronics 2019-2036, in 1,000 tonnes.
Figure 143. Biodegradable mulch films.
Figure 144. Global production volumes for bio-based polymers in agriculture 2019-2036, in 1,000 tonnes.
Figure 145. Global production capacities for bioplastics by end user market 2019-2036, 1,000 tonnes.
Figure 146. Production volumes for bio-based polymers in North America by type 2019-2036, in 1,000 tonnes.
Figure 147. Production volumes for bio-based polymers in Europe by type 2019-2036, in 1,000 tonnes.
Figure 148. Production volumes for bio-based polymers in China by type 2019-2036, in 1,000 tonnes.
Figure 149. Production volumes for bio-based polymers in Japan by type 2019-2036, in 1,000 tonnes.
Figure 150. Production volumes for bio-based polymers in Latin America by type 2019-2036, in 1,000 tonnes.
Figure 151. Pluumo.
Figure 152. ANDRITZ Lignin Recovery process.
Figure 153. Anpoly cellulose nanofiber hydrogel.
Figure 154. MEDICELLU™.
Figure 155. Asahi Kasei CNF fabric sheet.
Figure 156. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.
Figure 157. CNF nonwoven fabric.
Figure 158. Roof frame made of natural fiber.
Figure 159. Beyond Leather Materials product.
Figure 160. BIOLO e-commerce mailer bag made from PHA.
Figure 161. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.
Figure 162. Fiber-based screw cap.
Figure 163. formicobio™ technology.
Figure 164. nanoforest-S.
Figure 165. nanoforest-PDP.
Figure 166. nanoforest-MB.
Figure 167. sunliquid® production process.
Figure 168. CuanSave film.
Figure 169. Celish.
Figure 170. Trunk lid incorporating CNF.
Figure 171. ELLEX products.
Figure 172. CNF-reinforced PP compounds.
Figure 173. Kirekira! toilet wipes.
Figure 174. Color CNF.
Figure 175. Rheocrysta spray.
Figure 176. DKS CNF products.
Figure 177. Domsjö process.
Figure 178. Mushroom leather.
Figure 179. CNF based on citrus peel.
Figure 180. Citrus cellulose nanofiber.
Figure 181. Filler Bank CNC products.
Figure 182. Fibers on kapok tree and after processing.
Figure 183.  TMP-Bio Process.
Figure 184. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.
Figure 185. Water-repellent cellulose.
Figure 186. Cellulose Nanofiber (CNF) composite with polyethylene (PE).
Figure 187. PHA production process.
Figure 188. CNF products from Furukawa Electric.
Figure 189. AVAPTM process.
Figure 190. GreenPower+™ process.
Figure 191. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.
Figure 192. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).
Figure 193. CNF gel.
Figure 194. Block nanocellulose material.
Figure 195. CNF products developed by Hokuetsu.
Figure 196. Marine leather products.
Figure 197. Inner Mettle Milk products.
Figure 198. Kami Shoji CNF products.
Figure 199. Dual Graft System.
Figure 200. Engine cover utilizing Kao CNF composite resins.
Figure 201. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).
Figure 202. Kel Labs yarn.
Figure 203. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).
Figure 204. Lignin gel.
Figure 205. BioFlex process.
Figure 206. Nike Algae Ink graphic tee.
Figure 207. LX Process.
Figure 208. Made of Air's HexChar panels.
Figure 209. TransLeather.
Figure 210. Chitin nanofiber product.
Figure 211. Marusumi Paper cellulose nanofiber products.
Figure 212. FibriMa cellulose nanofiber powder.
Figure 213. METNIN™ Lignin refining technology.
Figure 214. IPA synthesis method.
Figure 215. MOGU-Wave panels.
Figure 216. CNF slurries.
Figure 217. Range of CNF products.
Figure 218. Reishi.
Figure 219. Compostable water pod.
Figure 220. Leather made from leaves.
Figure 221. Nike shoe with beLEAF™.
Figure 222. CNF clear sheets.
Figure 223. Oji Holdings CNF polycarbonate product.
Figure 224. Enfinity cellulosic ethanol technology process.
Figure 225.  Precision Photosynthesis™ technology.
Figure 226. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.
Figure 227. XCNF.
Figure 228: Plantrose process.
Figure 229. LOVR hemp leather.
Figure 230. CNF insulation flat plates.
Figure 231. Hansa lignin.
Figure 232. Manufacturing process for STARCEL.
Figure 233. Manufacturing process for STARCEL.
Figure 234. 3D printed cellulose shoe.
Figure 235. Lyocell process.
Figure 236. North Face Spiber Moon Parka.
Figure 237. PANGAIA LAB NXT GEN Hoodie.
Figure 238. Spider silk production.
Figure 239. Stora Enso lignin battery materials.
Figure 240. 2 wt.% CNF suspension.
Figure 241. BiNFi-s Dry Powder.
Figure 242. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.
Figure 243. Silk nanofiber (right) and cocoon of raw material.
Figure 244. Sulapac cosmetics containers.
Figure 245.  Sulzer equipment for PLA polymerization processing.
Figure 246. Solid Novolac Type lignin modified phenolic resins.
Figure 247. Teijin bioplastic film for door handles.
Figure 248. Corbion FDCA production process.
Figure 249. Comparison of weight reduction effect using CNF.
Figure 250. CNF resin products.
Figure 251. UPM biorefinery process.
Figure 252. Vegea production process.
Figure 253. The Proesa® Process.
Figure 254. Goldilocks process and applications.
Figure 255. Visolis’ Hybrid Bio-Thermocatalytic Process.
Figure 256. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.
Figure 257. Worn Again products.
Figure 258. Zelfo Technology GmbH CNF production process.

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • 3DBioFibR
  • 3M
  • 9Fiber Inc.
  • ADBioplastics
  • Adriano di Marti/Desserto
  • Advanced Biochemical Thailand
  • Aeropowder Limited
  • Aemetis Inc.
  • AEP Polymers
  • AGRANA Staerke GmbH
  • AgroRenew
  • Ahlstrom-Munksjö Oyj
  • Algaeing
  • Algenesis Corporation
  • Algal Bio
  • Algenol
  • Algenie
  • Alginor ASA
  • Algix LLC
  • AmphiStar
  • AMSilk GmbH
  • Ananas Anam Ltd.
  • An Phát Bioplastics
  • Anellotech Inc.
  • Andritz AG
  • Anqing He Xing Chemical
  • Ankor Bioplastics
  • ANPOLY Inc.
  • Applied Bioplastics
  • Aquafil S.p.A.
  • Aquapak Polymers Ltd
  • Archer Daniel Midland Company
  • Arctic Biomaterials Oy
  • Ardra Bio
  • Arekapak GmbH
  • Arkema S.A
  • Arlanxeo
  • Arrow Greentech
  • Attis Innovations LLC
  • Arzeda Corp.
  • Asahi Kasei Chemicals Corporation
  • AVA Biochem AG
  • Avantium B.V.
  • Avani Eco
  • Avient Corporation
  • Axcelon Biopolymers Corporation
  • Ayas Renewables Inc.
  • Azolla
  • Bambooder Biobased Fibers B.V.
  • BASF SE
  • Bast Fiber Technologies Inc.
  • BBCA Biochemical & GALACTIC Lactic Acid
  • Bcomp ltd.
  • Better Fibre Technologies
  • Betulium Oy
  • Beyond Leather Materials ApS
  • Bioextrax AB
  • Bio Fab NZ
  • BIO-FED
  • Biofibre GmbH
  • Biofine Technology LLC
  • Bio2Materials Sp. z o.o.
  • Biokemik
  • Bioleather
  • BIOLO
  • BioLogiQ Inc.
  • Biomass Resin Holdings
  • Biome Bioplastics
  • BioSolutions
  • Biosyntia
  • BIOTEC GmbH & Co. KG
  • Biofiber Tech Sweden AB
  • Bioform Technologies
  • BIO-LUTIONS International AG
  • Biophilica
  • Bioplastech Ltd
  • Bioplastix
  • Biopolax
  • Biotecam
  • Biotic Circular Technologies Ltd.
  • Biotrem
  • Biovox
  • Bioweg
  • BlockTexx Pty Ltd.
  • Bloom Biorenewables SA
  • BluCon Biotech GmbH
  • Blue BioFuels Inc.
  • Blue Ocean Closures
  • Bluepha Beijing Lanjing Microbiology Technology
  • Bolt Threads
  • Borealis AG
  • Borregaard Chemcell
  • Bosk Bioproducts Inc.
  • Bowil Biotech Sp. z o.o.
  • B-PREG, Braskem SA
  • Bucha Bio Inc.
  • Buyo Bioplastic Ltd.
  • Burgo Group S.p.A.
  • C16 Biosciences
  • Carbiolice
  • Carbios
  • Carbon Crusher
  • Carbonwave
  • Cardia Bioplastics Ltd.
  • Cardolite
  • CARAPAC Company
  • Carapace Biopolymers
  • Cargill
  • Cass Materials Pty Ltd
  • Catalyxx
  • Cathay Industrial Biotech Ltd.
  • Celanese Corporation
  • Cellicon B.V.
  • Cellucomp Ltd.
  • Celluforce
  • CellON
  • Cellugy
  • Cellutech AB (Stora Enso)
  • ChainCraft
  • CH-Bioforce Oy
  • ChakraTech
  • Checkerspot Inc.
  • Chempolis Oy
  • Chitelix
  • Chongqing Bofei Biochemical Products
  • Chuetsu Pulp & Paper
  • CIMV
  • Circa Group
  • Circular Systems
  • CJ Biomaterials Inc.
  • CO2BioClean
  • Coastgrass ApS
  • COFCO Cooperation Ltd.
  • Coffeeco Upcycle
  • Corn Next
  • Corumat Inc.
  • Clariant AG
  • CreaFill Fibers Corporation
  • Cristal Union Group
  • Cruz Foam
  • CuanTec Ltd.
  • Daesang
  • Daicel Corporation
  • Daicel Polymer Ltd.
  • DaikyoNishikawa Corporation
  • Daio Paper Corporation
  • Daishowa Paper Products
  • DAK Americas LLC
  • Danimer Scientific LLC
  • DENSO Corporation
  • Diamond Green Diesel LLC
  • DIC Corporation
  • DIC Products Inc.
  • Dispersa
  • DKS Co. Ltd.
  • Domsjö Fabriker AB
  • Domtar Paper Company LLC
  • Dongnam Realize
  • Dongying Hebang Chemical Corp.
  • Dow Inc.
  • Royal DSM N.V.
  • DuFor Resins B.V.
  • DuPont
  • DuPont Tate & Lyle Bio Products
  • Eastman Chemical Ltd. Corporation
  • ecoGenie biotech
  • Ecopel
  • Ecoshell
  • Ecovia Renewables
  • Ecovance
  • Ecovative Design LLC
  • Eden Materials
  • EggPlant Srl
  • Ehime Paper Manufacturing
  • Emirates Biotech
  • EMS-Grivory
  • Enerkem Inc.
  • Enkev, Eni S.p.A.
  • Enviral
  • EnginZyme AB
  • Enzymit
  • Eranova
  • Esbottle Oy
  • EveryCarbon
  • Evolved By Nature
  • Evonik Industries AG
  • Evrnu
  • FabricNano
  • Fairbrics
  • Faircraft
  • Far Eastern New Century Corporation
  • Fermentalg
  • Fiberlean Technologies
  • Fiberight
  • Fillerbank Limited
  • Fiquetex S.A.S.
  • FKuR Kunststoff GmbH
  • FlexSea
  • Flocus
  • Floreon
  • Foamplant BV
  • FP Innovations
  • Fraunhofer Center for Chemical-Biotechnological Processes CBP
  • Fraunhofer Institute for Silicate Research ISC
  • Fraunhofer Institute for Structural Durability and System Reliability LBF
  • Freyzein
  • Fruit Leather Rotterdam
  • Fuji Pigment
  • Full Cycle Bioplastics LLC
  • Furukawa Electric
  • Futerro
  • Futuramat Sarl
  • Futurity Bio-Ventures Ltd.
  • Gaiamer Biotechnologies
  • Galatea Biotech Srl
  • G+E GETEC Holding GmbH
  • Gelatex Technologies OÜ
  • Gen3Bio
  • Genecis Bioindustries Inc.
  • GeneusBiotech BV
  • Genomatica
  • Gevo Inc
  • Global Bioenergies SA
  • Grabio Greentech Corporation
  • Grado Zero Innovation
  • Granbio Technologies
  • Green Science Alliance
  • GRECO
  • Grupp MAIP
  • GS Alliance
  • Guangzhou Bio-plus Materials Technology
  • Haldor Topsoe A/S
  • Hattori Shoten K.K.
  • Hebei Casda Biomaterials
  • Hebei Jiheng Chemical
  • Hebei Xinhua Lactic Acid
  • Heilongjiang Chenneng Bioengineering Ltd.
  • Helian Polymers BV
  • Henan Jindan Lactic Acid Technology
  • Henan Xinghan Biological Technology
  • Hengshui Jinghua Chemical
  • Hengli Petrochemical
  • Hexa Chemical/Nature Gift
  • Hexas Biomass Inc.
  • Hexion Inc
  • Hokuetsu Toyo Fibre
  • Honext Material SL
  • HTL Biotechnology
  • Hubei Guangshui National Chemical
  • Huitong Biomaterials
  • Humintech GmbH
  • Hunan Anhua Lactic Acid
  • Icytos
  • India Glycols Ltd.
  • Indochine Bio Plastiques (ICBP) Sdn Bhd
  • Indorama Ventures Public
  • Ingevity
  • Inner Mettle
  • Infinited Fiber Company Oy
  • Iogen Corporation
  • Inovyn
  • Insempra
  • Inspidere B.V.
  • Ioniqa
  • Itaconix
  • Intec Bioplastics
  • JeNaCell GmbH