+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Cancer Nanotechnology Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F

  • PDF Icon

    Report

  • 190 Pages
  • November 2023
  • Region: Global
  • TechSci Research
  • ID: 5922242
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

Global Cancer Nanotechnology Market has valued at USD 34.80 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 9.35% through 2028. Diagnostics will play a pivotal role in propelling the growth of the Global Cancer Nanotechnology Market. Nanotechnology offers a revolutionary approach to cancer diagnostics, enabling the development of highly sensitive and specific tools for early detection. Nanoparticles can be designed as advanced contrast agents, enhancing the resolution of imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT). This heightened precision allows for the detection of cancer at its earliest stages, significantly improving the chances of successful treatment. Moreover, nanotechnology facilitates the creation of liquid biopsy platforms, where nanoscale materials can detect and analyze cancer biomarkers in bodily fluids with unprecedented sensitivity. This non-invasive approach to diagnostics holds great promise for real-time monitoring of cancer progression and treatment response. Companies investing in the intersection of nanotechnology and cancer diagnostics are poised to drive innovation and capture a substantial market share. As healthcare systems worldwide prioritize early detection and personalized medicine, the integration of nanotechnology in diagnostics represents a critical enabler for advancing cancer care. The demand for more accurate, efficient, and non-invasive diagnostic tools positions nanotechnology as a key driver in shaping the future of global cancer diagnostics.

Key Market Drivers

Precision Medicine Advancements

Precision medicine advancements are poised to propel the growth of the Global Cancer Nanotechnology Market by revolutionizing cancer treatment strategies. As precision medicine tailors medical decisions and interventions to individual patient characteristics, nanotechnology emerges as a pivotal player in enhancing targeted therapies. Nanoparticles, with their unique properties, enable precise drug delivery to cancer cells while minimizing damage to healthy tissues. This targeted approach enhances treatment efficacy and reduces side effects, aligning with the personalized nature of precision medicine. The synergy between precision medicine and cancer nanotechnology opens new avenues for innovative therapies, diagnostics, and imaging techniques. Companies investing in research and development at this intersection are likely to gain a competitive edge, driving market expansion. Moreover, the ability of nanotechnology to overcome biological barriers, optimize drug pharmacokinetics, and enable early cancer detection positions it as a cornerstone technology in the evolving landscape of cancer care. Consequently, the Global Cancer Nanotechnology Market is expected to witness significant growth, propelled by the symbiotic relationship between precision medicine advancements and the transformative potential of nanotechnology in cancer treatment.

Early Detection and Diagnosis

Early detection and diagnosis will be key drivers of growth in the Global Cancer Nanotechnology Market. Nanotechnology plays a pivotal role in developing advanced diagnostic tools that enable the detection of cancer at its nascent stages, enhancing the effectiveness of treatment interventions. Nanoparticles can be engineered to interact specifically with cancer biomarkers, facilitating highly sensitive and accurate diagnostic tests. This precision in early detection not only improves patient outcomes but also reduces overall healthcare costs associated with advanced-stage cancer treatment. Moreover, nanotechnology contributes to the development of cutting-edge imaging technologies, such as nanoparticle-based contrast agents for high-resolution imaging. These advancements enable clinicians to visualize and diagnose tumors with greater accuracy. As healthcare systems worldwide prioritize early cancer detection for improved prognosis, the demand for innovative nanotechnology solutions is set to surge. Companies investing in research and commercialization of nanotech-driven diagnostic tools are positioned to capitalize on this growing market trend, fostering the expansion of the Global Cancer Nanotechnology Market in response to the global imperative for early cancer detection and diagnosis.

Minimally Invasive Therapies

The growth of the Global Cancer Nanotechnology Market is poised to be significantly driven by the integration of minimally invasive therapies. Nanotechnology offers groundbreaking solutions for designing minimally invasive cancer treatments that enhance precision and reduce the invasiveness of procedures. Nanoparticles can be engineered to carry therapeutic agents directly to cancer cells, enabling targeted drug delivery without affecting surrounding healthy tissues. This targeted approach minimizes side effects and enhances the overall safety profile of cancer therapies. Furthermore, nanotechnology contributes to the development of theranostic platforms, combining therapy and diagnostics in a single system. This allows for real-time monitoring of treatment efficacy, optimizing therapeutic interventions for individual patients. The shift towards minimally invasive techniques aligns with the growing emphasis on patient-centric care, driving the adoption of nanotechnology-driven therapies. Companies at the forefront of developing minimally invasive cancer treatments based on nanotechnology are poised for significant market growth, as healthcare providers and patients increasingly seek alternatives to traditional, more invasive approaches. As the demand for effective and patient-friendly cancer treatments rises, the Global Cancer Nanotechnology Market is expected to flourish, propelled by innovations in minimally invasive therapies.

Key Market Challenges

Biocompatibility and Toxicity Concerns

Biocompatibility and toxicity concerns pose significant obstacles to the growth of the Global Cancer Nanotechnology Market. While nanotechnology holds immense promise in cancer treatment, the potential risks associated with the interaction of nanoparticles with biological systems raise apprehensions among researchers, regulatory bodies, and healthcare providers. Ensuring the biocompatibility of nanomaterials is crucial to prevent adverse effects on normal cells and tissues. Toxicity concerns stem from the intricate interactions between nanoparticles and biological entities, raising questions about the long-term safety of these materials. Uncertainties regarding the potential accumulation of nanoparticles in vital organs and their systemic impact on the human body create regulatory challenges and may impede market expansion. Rigorous testing and comprehensive studies are imperative to address these concerns and gain regulatory approvals. Companies operating in the Global Cancer Nanotechnology Market need to invest significantly in research and development to mitigate biocompatibility and toxicity issues. Proactive engagement with regulatory agencies to establish safety standards and transparent communication regarding risk mitigation strategies will be vital. Addressing these concerns head-on is essential for building trust among stakeholders and unlocking the full potential of nanotechnology in cancer treatment, fostering sustainable market growth.

Standardization of Manufacturing Processes

The standardization of manufacturing processes poses a potential hindrance to the growth of the Global Cancer Nanotechnology Market. The inherent complexity of nanotechnology, with its varied materials and intricate fabrication methods, makes standardization challenging. Unlike traditional pharmaceuticals, nanomedicines often require specialized manufacturing techniques tailored to specific formulations, hindering the development of standardized processes. The dynamic nature of nanomaterials and their diverse applications in cancer treatment demand flexibility in manufacturing, as one-size-fits-all approaches may limit innovation and customization. Attempts to impose rigid standards could stifle the creativity and adaptability required for continuous advancements in nanotechnology. Moreover, the regulatory landscape for nanomedicines is still evolving, further complicating efforts to establish universally applicable manufacturing standards. Companies in the Global Cancer Nanotechnology Market must navigate these challenges by advocating for flexible regulatory frameworks that accommodate the unique characteristics of nanomaterials. Emphasizing collaboration between industry stakeholders, research institutions, and regulatory bodies is essential to strike a balance between ensuring product quality and fostering a conducive environment for ongoing innovation. By addressing the complexities of standardization, the market can better capitalize on the inherent flexibility of nanotechnology and drive sustainable growth in cancer treatment solutions.

Key Market Trends

Immunotherapy Enhancement

Immunotherapy enhancement is poised to be a driving force behind the growth of the Global Cancer Nanotechnology Market. Nanotechnology offers a transformative platform for augmenting the effectiveness of immunotherapies, which harness the body's immune system to combat cancer. Nanoparticles can be engineered to serve as carriers for immunomodulatory agents, allowing for targeted and controlled release directly within the tumor microenvironment. The precision of nanotechnology facilitates the delivery of immunotherapeutic payloads directly to cancer cells, overcoming challenges associated with systemic administration. Additionally, nanomaterials can be designed to modulate immune responses, enhancing the overall efficacy of immunotherapy treatments. This synergistic combination holds the potential to boost the therapeutic outcomes of immunotherapies, improving patient responses and expanding the scope of applications. Companies investing in the convergence of nanotechnology and immunotherapy are likely to be at the forefront of market growth. As the demand for more effective and personalized cancer treatments continues to rise, the collaboration between nanotechnology and immunotherapy is expected to drive innovation, propel research and development initiatives, and foster the expansion of the Global Cancer Nanotechnology Market.

Multifunctional Nanoparticles

Multifunctional nanoparticles are positioned to drive significant growth in the Global Cancer Nanotechnology Market. These nanoparticles, with their ability to integrate multiple functions into a single platform, offer a versatile and efficient approach to cancer diagnosis and treatment. Engineered to carry therapeutic payloads, imaging agents, and targeting ligands simultaneously, multifunctional nanoparticles enable a comprehensive and targeted approach to cancer management. The integration of therapeutic and diagnostic functionalities within a single nanosystem enhances precision medicine by allowing real-time monitoring of treatment response. This versatility also enables earlier detection through advanced imaging modalities, contributing to improved patient outcomes. The efficiency of drug delivery is heightened, as these nanoparticles can be designed to specifically target cancer cells while minimizing impact on healthy tissues. Companies investing in the development of multifunctional nanoparticles are poised to capitalize on their broad applicability in cancer care. The adaptability of these nanoparticles aligns with the increasing demand for personalized and effective therapeutic solutions. As research and development efforts advance, the synergy between multifunctional nanoparticles and evolving cancer treatment strategies is expected to fuel the growth of the Global Cancer Nanotechnology Market.

Segmental Insights

Application Insights

Based on the Application, the Breast cancer segment is anticipated to witness substantial market growth throughout the forecast period. Breast cancer is poised to be a pivotal driver of growth in the Global Cancer Nanotechnology Market. With breast cancer being one of the most prevalent and widely diagnosed cancers globally, the demand for innovative and effective treatment modalities is substantial. Nanotechnology offers a promising avenue for advancements in breast cancer care, providing tailored solutions that address the complexities of this disease. Nanoparticles can be engineered to specifically target breast cancer cells, delivering therapeutic agents directly to the tumor site with heightened precision. This targeted drug delivery minimizes damage to healthy tissues, potentially reducing side effects and improving overall treatment outcomes. Additionally, nanotechnology plays a crucial role in enhancing imaging techniques for early breast cancer detection, contributing to improved prognosis and treatment efficacy. As breast cancer research continues to underscore the importance of personalized and targeted approaches, the integration of nanotechnology in diagnostics and therapeutics aligns seamlessly with the evolving landscape of breast cancer care. Companies focusing on nanotechnology solutions for breast cancer are well-positioned to capitalize on this significant market opportunity, contributing to the overall growth of the Global Cancer Nanotechnology Market.

End User Insights

Based on the End User segment, the Diagnostics segment has been the dominant force in the market. Diagnostics will play a pivotal role in propelling the growth of the Global Cancer Nanotechnology Market. Nanotechnology offers a revolutionary approach to cancer diagnostics, enabling the development of highly sensitive and specific tools for early detection. Nanoparticles can be designed as advanced contrast agents, enhancing the resolution of imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT). This heightened precision allows for the detection of cancer at its earliest stages, significantly improving the chances of successful treatment. Moreover, nanotechnology facilitates the creation of liquid biopsy platforms, where nanoscale materials can detect and analyze cancer biomarkers in bodily fluids with unprecedented sensitivity. This non-invasive approach to diagnostics holds great promise for real-time monitoring of cancer progression and treatment response. Companies investing in the intersection of nanotechnology and cancer diagnostics are poised to drive innovation and capture a substantial market share. As healthcare systems worldwide prioritize early detection and personalized medicine, the integration of nanotechnology in diagnostics represents a critical enabler for advancing cancer care. The demand for more accurate, efficient, and non-invasive diagnostic tools positions nanotechnology as a key driver in shaping the future of global cancer diagnostics.

Regional Insights

North America, specifically the Cancer Nanotechnology Market, dominated the market in 2022, primarily due to North America is positioned to be a significant driver of growth in the Global Cancer Nanotechnology Market. The region's dominance can be attributed to a confluence of factors, including robust research and development infrastructure, substantial investments in healthcare innovation, and a proactive regulatory environment. Leading research institutions and pharmaceutical companies in North America are at the forefront of pioneering advancements in cancer nanotechnology, fostering a rich ecosystem of innovation. Furthermore, the region benefits from a strong collaboration between academia, industry, and government bodies, creating a conducive environment for the translation of research into commercially viable products. Substantial funding initiatives, both public and private, fuel the development and commercialization of nanotechnology-based cancer therapies. In addition to the conducive innovation landscape, North America boasts a large patient pool, a high prevalence of cancer, and a healthcare system that prioritizes technological advancements. The demand for cutting-edge cancer treatments aligns with the capabilities of nanotechnology, positioning North America as a key market driver. As a result, companies investing in cancer nanotechnology in North America are likely to experience significant growth, contributing substantially to the overall expansion of the Global Cancer Nanotechnology Market.

Report Scope:

In this report, the Global Cancer Nanotechnology Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Cancer Nanotechnology Market, By Type:

  • Nanoparticles
  • Nanofibers
  • Nanorods
  • Graphene
  • Nanofluidic Devices
  • Others

Cancer Nanotechnology Market, By Application:

  • Breast Cancer
  • Stomach Cancer
  • Lung Cancer
  • Others

Cancer Nanotechnology Market, By End User:

  • Diagnostics
  • Therapeutics
  • Theranostics

Cancer Nanotechnology Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey
  • Egypt

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Cancer Nanotechnology Market.

Available Customizations:

Global Cancer Nanotechnology market report with the given market data, the publisher offers customizations according to a company's specific needs.


This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Voice of Customer
5. Global Cancer Nanotechnology Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Type (Nanoparticles, Nanofibers, Nanorods, Graphene, Nanofluidic Devices, Others)
5.2.2. By Application (Breast Cancer, Stomach Cancer, Lung Cancer, Others)
5.2.3. By End User (Diagnostics, Therapeutics, Theranostics)
5.2.4. By Region (North America, Europe, Asia Pacific, South America, Middle East & Africa)
5.2.5. By Company (2022)
5.3. Market Map
5.3.1 By Type
5.3.2 By Application
5.3.3 By End User
5.3.4 By Region
6. North America Cancer Nanotechnology Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Type (Nanoparticles, Nanofibers, Nanorods, Graphene, Nanofluidic Devices, Others)
6.2.2. By Application (Breast Cancer, Stomach Cancer, Lung Cancer, Others)
6.2.3. By End User (Diagnostics, Therapeutics, Theranostics)
6.2.4. By Country
6.3. North America: Country Analysis
6.3.1. United States Cancer Nanotechnology Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Type
6.3.1.2.2. By Application
6.3.1.2.3. By End User
6.3.2. Canada Cancer Nanotechnology Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Type
6.3.2.2.2. By Application
6.3.2.2.3. By End User
6.3.3. Mexico Cancer Nanotechnology Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Type
6.3.3.2.2. By Application
6.3.3.2.3. By End User
7. Europe Cancer Nanotechnology Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Type (Nanoparticles, Nanofibers, Nanorods, Graphene, Nanofluidic Devices, Others)
7.2.2. By Application (Breast Cancer, Stomach Cancer, Lung Cancer, Others)
7.2.3. By End User (Diagnostics, Therapeutics, Theranostics)
7.2.4. By Country
7.3. Europe: Country Analysis
7.3.1. France Cancer Nanotechnology Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Type
7.3.1.2.2. By Application
7.3.1.2.3. By End User
7.3.2. Germany Cancer Nanotechnology Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Type
7.3.2.2.2. By Application
7.3.2.2.3. By End User
7.3.3. United Kingdom Cancer Nanotechnology Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Type
7.3.3.2.2. By Application
7.3.3.2.3. By End User
7.3.4. Italy Cancer Nanotechnology Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Type
7.3.4.2.2. By Application
7.3.4.2.3. By End User
7.3.5. Spain Cancer Nanotechnology Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Type
7.3.5.2.2. By Application
7.3.5.2.3. By End User
8. Asia-Pacific Cancer Nanotechnology Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Type (Nanoparticles, Nanofibers, Nanorods, Graphene, Nanofluidic Devices, Others)
8.2.2. By Application (Breast Cancer, Stomach Cancer, Lung Cancer, Others)
8.2.3. By End User (Diagnostics, Therapeutics, Theranostics)
8.2.4. By Country
8.3. Asia-Pacific: Country Analysis
8.3.1. China Cancer Nanotechnology Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Type
8.3.1.2.2. By Application
8.3.1.2.3. By End User
8.3.2. India Cancer Nanotechnology Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Type
8.3.2.2.2. By Application
8.3.2.2.3. By End User
8.3.3. Japan Cancer Nanotechnology Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Type
8.3.3.2.2. By Application
8.3.3.2.3. By End User
8.3.4. South Korea Cancer Nanotechnology Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Type
8.3.4.2.2. By Application
8.3.4.2.3. By End User
8.3.5. Australia Cancer Nanotechnology Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Type
8.3.5.2.2. By Application
8.3.5.2.3. By End User
9. South America Cancer Nanotechnology Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Type (Nanoparticles, Nanofibers, Nanorods, Graphene, Nanofluidic Devices, Others)
9.2.2. By Application (Breast Cancer, Stomach Cancer, Lung Cancer, Others)
9.2.3. By End User (Diagnostics, Therapeutics, Theranostics)
9.2.4. By Country
9.3. South America: Country Analysis
9.3.1. Brazil Cancer Nanotechnology Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Type
9.3.1.2.2. By Application
9.3.1.2.3. By End User
9.3.2. Argentina Cancer Nanotechnology Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Type
9.3.2.2.2. By Application
9.3.2.2.3. By End User
9.3.3. Colombia Cancer Nanotechnology Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Type
9.3.3.2.2. By Application
9.3.3.2.3. By End User
10. Middle East and Africa Cancer Nanotechnology Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Type (Nanoparticles, Nanofibers, Nanorods, Graphene, Nanofluidic Devices, Others)
10.2.2. By Application (Breast Cancer, Stomach Cancer, Lung Cancer, Others)
10.2.3. By End User (Diagnostics, Therapeutics, Theranostics)
10.2.4. By Country
10.3. MEA: Country Analysis
10.3.1. South Africa Cancer Nanotechnology Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Type
10.3.1.2.2. By Application
10.3.1.2.3. By End User
10.3.2. Saudi Arabia Cancer Nanotechnology Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Type
10.3.2.2.2. By Application
10.3.2.2.3. By End User
10.3.3. UAE Cancer Nanotechnology Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Type
10.3.3.2.2. By Application
10.3.3.2.3. By End User
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
12.1. Recent Development
12.2. Mergers & Acquisitions
12.3. Product Launches
13. Global Cancer Nanotechnology Market: SWOT Analysis
14. Porter’s Five Forces Analysis
14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Products
15. Competitive Landscape
15.1. Abbott Laboratories Ltd.
15.1.1. Business Overview
15.1.2. Product Offerings
15.1.3. Recent Developments
15.1.4. Financials (As Reported)
15.1.5. Key Personnel
15.1.6. SWOT Analysis
15.2. GE Healthcare Inc.
15.3. Combimatrix Corporation.
15.4. Mallinckrodt Plc
15.5. Sigma-Tau Pharmaceuticals Inc.
15.6. Merck and Company Inc.
15.7. Pfizer, Inc.
15.8. Nanosphere, Inc. (Luminex Corporation)
15.9. Celgene Corporation
15.10. Teva Pharmaceutical Industries
16. Strategic Recommendations

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • Abbott Laboratories Ltd.
  • GE Healthcare Inc.
  • Combimatrix Corporation.
  • Mallinckrodt Plc
  • Sigma-Tau Pharmaceuticals Inc.
  • Merck and Company Inc.
  • Pfizer, Inc.
  • Nanosphere, Inc. (Luminex Corporation)
  • Celgene Corporation
  • Teva Pharmaceutical Industries

Table Information