The virtual power plant market is projected to grow at a CAGR of 20.11% over the forecast period, increasing from US$742.5 million in 2021 to a total market size of US$2,678.012 million by 2028.
A Virtual Power Plant harnesses the combined capacity of various distributed energy resources (DERs) spread throughout the network, creating a unique operational portfolio tailored to the specific characteristics of these DERs. Virtual power plants find applicability in several areas, including EV chargers, home appliances, HVAC equipment, and batteries. The escalating growth of the virtual power plant industry is largely propelled by the expanding renewable energy, improved EV charging infrastructure, and emerging energy storage technologies.
Increasing renewable energy drives virtual power plant market growth.
Virtual Power Plants are used in integrating renewable energy sources such as solar panels and wind turbines into the power grid through advanced software. The rising demand for renewable energy due to growing global concern about climate change and the need to reduce greenhouse gas emissions has provided a positive outlook to the market demand for virtual power plants. According to the International Renewable Energy Agency, in 2022, global wind energy capacity experienced a boost of 75 GW, marking a growth of 9%. Solar photovoltaic power also saw a significant expansion, with an addition of 191 GW.
Increasing EV charging infrastructure bolsters the virtual power plant market growth.
Virtual Power Plants are used in the electric vehicle charging infrastructure by managing and balancing the electricity load. Due to the increasing EV adoption, the demand for power during peak charging times can stress the electrical grid. Virtual power plants, through their integrated control of diverse distributed energy resources, help to stabilize the grid, ensuring that power is effectively allocated during these high-demand periods. According to the International Energy Agency, in 2022, the United States witnessed the installation of approximately 6,300 fast charging stations and by the close of the year, the cumulative number of fast charging stations hit 28,000.
Emerging energy storage systems drive the virtual power plant market expansion.
Virtual Power Plants are instrumental in energy storage systems because they can efficiently manage when and how much stored energy to release into the grid, optimizing the use of energy storage systems based on real-time demand and supply conditions. This facilitates a more stable and reliable grid, particularly important given the intermittency of renewable energy sources like wind and solar. The growth of energy storage systems is driven by increasing renewable energy deployment and investments which is driving the virtual power plant market’s growth. According to the International Energy Agency, in 2022, worldwide investments in battery energy storage surpassed USD 20 billion, showcasing robust growth. The momentum is set to continue, with projected investments for 2023 reaching a record of over USD 35 billion.
North America is projected to dominate the virtual power market.
North America will hold a significant share of the virtual power plant market due to the region's significant investment and collaborative efforts. Substantial financial commitments are being made by various companies, utilities, and government bodies to scale up VPP projects in North America. For instance, in 2020, Sidewalk Infrastructure Partners disclosed their pledge of $100 million towards OhmConnect to scale its operations. This substantial investment is earmarked for the establishment of Resi-Station, which is set to become North America's most extensive virtual power plant.
High initial cost restrains the virtual power plant market growth.
The growth of the virtual power plant (VPP) industry can be hindered by the significant initial investment necessary to establish these systems. The development of a VPP involves the integration of a wide array of energy resources, each with its costs, and the installation of sophisticated control and communication infrastructures. These components when combined constitute a sizable initial expenditure, which can prove challenging for some companies or regions, particularly those with budget constraints or in poor areas. This high financial barrier to entry can therefore curtail the widespread adoption of VPPs, acting as a notable deterrent in the overall expansion of the VPP industry.
Key Developments
June 2023: Tesla launched an initiative to debut its Virtual Power Plants (VPPs) in Texas that will provide Powerwall owners with the opportunity to monetize their systems. By enabling them to supply excess power back to the local grid during emergencies, this innovative approach not only aids in stabilizing the power supply but also creates a new income stream for Powerwall owners, all while bolstering grid resilience.
April 2023: SunPower, a prominent provider of solar technology and energy services, joined forces with OhmConnect, a leader in residential energy flexibility, to roll out a new Virtual Power Plant (VPP) service. This innovative offering is now available to SunPower's customers throughout California, marking a significant step in expanding the state's renewable energy infrastructure.
April 2023: Gogoro Inc partnered with Enel X, a worldwide innovator in energy services including Virtual Power Plants (VPPs). As part of their collaboration, 2,500 battery swapping stations will be commercially launched across 1,000 sites, integrated into Enel X's Virtual Power Plant. This strategic initiative is poised to bolster Taiwan's transition to renewable energy, showcasing an effective combination of advanced battery technology and virtual power plant systems.
November 2021: SunPower Corp. unveiled its Virtual Power Plant (VPP) solution. This innovative initiative allows SunVault energy storage customers to generate earnings by permitting utilities to draw upon their stored energy during periods of peak demand. Not only does this provide a financial incentive for customers, but it also aids in establishing a more reliable power grid within their local communities.
November 2020: Siemens broadened the application of virtual power plants in the industrial sector with a new contract at the Finnish brewery Sinebrychoff. Siemens crafted a unique business model geared towards propelling the brewery to the next tier of energy optimization. The model comprises a virtual power plant (VPP) and cutting-edge energy storage technology, supported by comprehensive financing solutions. This strategic implementation, set to take place at Sinebrychoff’s facility in the greater Helsinki area, will mark one of the first instances of power flexibility within an industrial site.
Segmentation
By Energy Type
Biomass & Biogas
Hydro
Wind
Solar
By Application
EV Chargers
Home Appliances
HVAC Equipment
Batteries
Others
By End-User
Residential
Commercial
Industrial
By Geography
North America
USA
Canada
Mexico
South America
Brazil
Argentina
Others
Europe
Germany
UK
France
Spain
Others
Middle East and Africa
Saudi Arabia
UAE
Others
Asia Pacific
China
Japan
South Korea
India
Australia
Other
Table of Contents
1. INTRODUCTION
1.1. Energy Transition Status 1.2. Sector-wise Analysis: Examination of Key Industries and Their Implications 1.2.1. Transport 1.2.2. Buildings 1.2.3. Industry 1.2.4. Power 1.3. Socio-Economic Impact of Energy Transition
2. RESEARCH METHODOLOGY
2.1. Research Data 2.2. Assumptions
3. EXECUTIVE SUMMARY
3.1. Research Highlights
4. ENERGY AND POWER INDUSTRY OVERVIEW
4.1. Introduction 4.2. Energy Industry Overview 4.2.1. Global Energy Production (in EJ) 4.2.1.1. Americas 4.2.1.2. Europe 4.2.1.3. Middle East & Africa 4.2.1.4. Asia Pacific 4.2.2. Energy Mix, By Fuel 4.3. Power Industry Overview 4.3.1. Global Power Generation (in TWh) 4.3.2. Power Mix 4.3.2.1. Renewable 4.3.2.2. Non-Renewable 4.4. Russian-Ukraine War Impact 4.4.1. Supply Shocks 4.4.2. Rising Energy Prices 4.4.3. Repercussions On Economic Policy
5. MARKET DYNAMICS
5.1. Market Drivers 5.2. Market Restraints 5.3. CO2 Emissions 5.3.1. Coal 5.3.2. Oil 5.3.3. Natural Gas 5.4. Clean Energy Investment 5.4.1. Electricity Generation 5.4.2. Energy Infrastructure 5.4.3. End-Use 5.5. Recommendations
6. GOVERNMENT REGULATIONS/POLICIES
6.1. Introduction 6.1. Net Zero Commitments 6.2. Remuneration Schemes
10.1. Introduction 10.2. North America 10.2.1. USA 10.2.2. Canada 10.2.3. Mexico 10.3. South America 10.3.1. Brazil 10.3.2. Argentina 10.3.3. Others 10.4. Europe 10.4.1. Germany 10.4.2. UK 10.4.3. France 10.4.4. Spain 10.4.5. Others 10.5. Middle East and Africa 10.5.1. Saudi Arabia 10.5.2. UAE 10.5.3. Others 10.6. Asia Pacific 10.6.1. China 10.6.2. Japan 10.6.3. South Korea 10.6.4. India 10.6.5. Australia 10.6.6. Others
11. RECENT DEVELOPMENT AND INVESTMENTS
12. COMPETITIVE ENVIRONMENT AND ANALYSIS
12.1. Major Players and Strategy Analysis 12.2. Market Share Analysis 12.3. Vendor Competitiveness Matrix
13. COMPANY PROFILES
13.1. Toshiba Energy Systems & Solutions Corp (Toshiba Corp) 13.2. Statkraft 13.3. Next Kraftwerke (Shell Overseas Investment B.V) 13.4. Honeywell International Inc. 13.5. Enel X 13.6. AutoGrid System Inc. (Schneider Electric) 13.7. Tesla 13.8. Sonnen GmbH 13.9. Energy & Meteo System GmbH 13.10. SunPower Corporation (TotalEnergies, Cypress Semiconductors)
Companies Mentioned
Toshiba Energy Systems & Solutions Corp (Toshiba Corp)
This product is a market research report. Each license type allows a set number of users to access the report. Please select an option from the list below. This product is a market research report. This is a single user license, allowing one user access to the product. The product is a PDF. This product is a market research report. This is a 1-5 user license, allowing up to five users have access to the product. The product is a PDF. This product is a market research report. This is an enterprise license, allowing all employees within your organization access to the product. The product is a PDF.
The sample excerpt is provided to help you make an informed purchasing decision. It is not intended to serve as free content or replace a full report. To ensure the sample aligns with your specific needs, our team will contact you to better understand your requirements.
An error occurred while sending the message. Should this issue persist, email us at help@researchandmarkets.net
This report can be tailored to focus on a specific country, region, continent, or provide global coverage. Please indicate your regions of interest and share any additional questions you may have. Our team strives to respond to all inquiries within the same business day.
An error occurred while sending the message. Should this issue persist, email us at help@researchandmarkets.net
*Required Information
This website uses cookies to ensure you get the best experience. Learn more