+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

The Global Thermal Interface Materials Market 2026-2036

  • PDF Icon

    Report

  • 395 Pages
  • August 2025
  • Region: Global
  • Future Markets, Inc
  • ID: 6051482

The global thermal interface materials (TIMs) market represents a critical segment of the advanced materials industry, serving as the essential bridge between heat-generating components and thermal management systems across diverse technological applications. These specialized materials are designed to enhance thermal conductivity while filling microscopic air gaps between surfaces, ensuring optimal heat transfer in increasingly compact and powerful electronic devices. The market has experienced substantial growth driven by the relentless demand for miniaturization and increased power density in electronic systems. Key application sectors include consumer electronics, electric vehicles, data centers, advanced semiconductor packaging, ADAS sensors, 5G infrastructure, aerospace and defense, industrial electronics, renewable energy systems, and medical electronics. Each sector presents unique thermal management challenges that require tailored TIM solutions with specific performance characteristics.

Consumer electronics remain the largest market segment, with smartphones, tablets, and wearable devices requiring increasingly sophisticated thermal management solutions. The transition to 5G technology has intensified thermal challenges, necessitating advanced materials like liquid metals, phase change materials, and carbon-based TIMs. The proliferation of AI-enabled devices and edge computing has further amplified the demand for high-performance thermal interface materials. The electric vehicle revolution has emerged as a transformative market driver, with battery thermal management becoming critical for safety, performance, and longevity. EV applications require TIMs that can operate across wide temperature ranges while maintaining electrical isolation and mechanical stability. The shift toward cell-to-pack and cell-to-chassis battery architectures has created new opportunities for gap fillers, thermal pads, and specialized adhesive systems.

Data centers and AI servers represent another high-growth segment, where thermal management directly impacts computational performance and energy efficiency. The deployment of advanced processors, GPUs, and AI accelerators has created demand for next-generation TIMs capable of handling extreme heat fluxes. Liquid cooling systems and immersion cooling technologies are driving innovation in compatible thermal interface materials. Material innovation continues to shape the market landscape. Traditional silicone-based thermal greases and pads are being supplemented by advanced solutions including carbon nanotubes, graphene-enhanced materials, metal-based TIMs, phase change materials, and even metamaterials. Each material class offers distinct advantages in terms of thermal conductivity, electrical properties, mechanical characteristics, and application-specific performance.

Carbon-based TIMs, including graphene, carbon nanotubes, and graphite derivatives, are gaining significant traction due to their exceptional thermal properties and potential for multifunctional capabilities. Metal-based solutions, including liquid metals and sintered materials, are finding applications in high-performance computing and power electronics where maximum thermal performance is required.

The market is characterized by intense competition among established chemical companies, specialized materials providers, and emerging technology companies. Key players are investing heavily in R&D to develop next-generation materials while expanding manufacturing capabilities to meet growing demand. Strategic partnerships between TIM suppliers and OEMs are becoming increasingly common as thermal management becomes more integrated into product design. Regional dynamics show strong growth across Asia-Pacific markets, driven by electronics manufacturing concentration and EV adoption. North America leads in advanced applications including aerospace, defense, and high-performance computing. Europe shows particular strength in automotive applications and industrial electronics.

Sustainability considerations are becoming increasingly important, with manufacturers developing bio-based materials, improving recyclability, and reducing environmental impact throughout the product lifecycle. Regulatory compliance, particularly in automotive and aerospace applications, continues to drive material certification and testing requirements.

Looking forward, the market faces both opportunities and challenges. The continued evolution toward higher power densities, new packaging technologies, and emerging applications in quantum computing and advanced AI systems will drive demand for innovative TIM solutions. However, supply chain complexities, raw material price volatility, and the need for increasingly sophisticated performance characteristics present ongoing challenges for market participants.

The Global Thermal Interface Materials Market 2026-2036 report provides an in-depth analysis of the global thermal interface materials market, delivering essential insights for manufacturers, suppliers, investors, and technology companies seeking to capitalize on emerging opportunities in this rapidly evolving sector. 

Report contents include: 

  • Market Analysis by Material Type:
    • Thermal Greases and Pastes - Market size, growth projections, application trends, and competitive landscape analysis
    • Thermal Gap Pads - Comprehensive coverage of silicone-based and advanced polymer pad solutions
    • Thermal Gap Fillers - Dispensable materials market analysis with focus on automated application systems
    • Phase Change Materials (PCMs) - Emerging technologies including organic, inorganic, and hybrid PCM solutions
    • Metal-based TIMs - Liquid metals, solders, sintered materials, and advanced alloy systems
    • Carbon-based TIMs - Graphene, carbon nanotubes, graphite, and diamond-enhanced thermal solutions
    • Potting Compounds and Encapsulants - Market analysis for protective thermal management materials
    • Thermal Adhesive Tapes - Structural bonding solutions with thermal conductivity properties
  • Advanced Technology Coverage:
    • Self-healing Thermal Interface Materials - Revolutionary materials with autonomous repair capabilities
    • Metamaterials for Thermal Management - Next-generation engineered materials with unique properties
    • Nanomaterial-Enhanced TIMs - Comprehensive analysis of nanotechnology integration
    • Multi-functional TIMs - Materials combining thermal, electrical, and mechanical properties
  • Market Segmentation by Application:
    • Consumer Electronics  - Smartphones, tablets, wearables, and emerging devices
    • Electric Vehicles  - Battery thermal management, power electronics, and charging infrastructure
    • Data Centers  - Server cooling, AI accelerators, and immersion cooling systems
    • Advanced Semiconductor Packaging  - TIM1, TIM2, and next-generation packaging solutions
    • ADAS Sensors  - Automotive sensor thermal management and autonomous vehicle applications
    • 5G Infrastructure  - Base stations, antennas, and telecommunications equipment
    • Aerospace & Defense  - Satellite systems, avionics, and military electronics
    • Industrial Electronics  - Automation systems, power supplies, and motor drives
    • Renewable Energy  - Solar inverters, wind power electronics, and energy storage
    • Medical Electronics  - Diagnostic equipment and patient monitoring systems
  • Technical Analysis and Performance Metrics:
    • Thermal conductivity benchmarking across material categories
    • Thermal resistance vs. thermal conductivity comparative analysis
    • System-level performance optimization strategies
    • Material dispensing technologies and automation trends
    • Supply chain analysis and raw material pricing dynamics
    • Environmental regulations and sustainability considerations
  • Market Forecasts and Projections:
    • Global market size projections from 2022-2036 by material type and application
    • Regional market analysis covering North America, Europe, Asia-Pacific, and emerging markets
    • Technology adoption timelines and market readiness assessments
    • Price trend analysis and cost optimization opportunities
    • Emerging application opportunities and disruptive technology impact
  • Competitive Landscape and Strategic Intelligence:
    • Comprehensive analysis of market dynamics, drivers, and challenges
    • Technology roadmaps for next-generation thermal interface materials
    • Patent landscape analysis and intellectual property trends
    • Strategic partnership opportunities and M&A activity
    • Investment trends and funding analysis for TIM innovations

This report features detailed profiles of 119 leading companies in the thermal interface materials ecosystem, including established chemical manufacturers, specialized materials suppliers, emerging technology companies, and innovative start-ups. Companies profiled include 3M, ADA Technologies, Aismalibar S.A., AI Technology Inc., Alpha Assembly, AluChem, AOK Technologies, AOS Thermal Compounds LLC, Arkema, Arieca Inc., ATP Adhesive Systems AG, Aztrong Inc., Bando Chemical Industries Ltd., Bdtronic, BestGraphene, BNNano, BNNT LLC, Boyd Corporation, BYK, Cambridge Nanotherm, Carbice Corp., Carbon Waters, Carbodeon Ltd. Oy, CondAlign AS, Denka Company Limited, Detakta Isolier- und Messtechnik GmbH & Co. KG, Dexerials Corporation, Deyang Carbonene Technology, Dow Corning, Dowa Electronics Materials Co. Ltd., DuPont (Laird Performance Materials), Dymax Corporation, Dynex Semiconductor (CRRC), ELANTAS Europe GmbH, Elkem Silicones, Enerdyne Thermal Solutions Inc., Epoxies Etc., First Graphene Ltd., Fujipoly, Fujitsu Laboratories, GCS Thermal, GLPOLY, Global Graphene Group, Goodfellow Corporation, Graphmatech AB, GuangDong KingBali New Material Co. Ltd., HALA Contec GmbH & Co. KG, Hamamatsu Carbonics Corporation, H.B. Fuller Company, Henkel AG & Co. KGAA, Hitek Electronic Materials, Honeywell, Hongfucheng New Materials, Huber Martinswerk, HyMet Thermal Interfaces SIA, Indium Corporation, Inkron, KB Element, Kerafol Keramische Folien GmbH & Co. KG, Kitagawa, KULR Technology Group Inc., Kyocera, Laird, Leader Tech Inc., LiSAT, LiquidCool Solutions, Liquid Wire Inc., MacDermid Alpha, MG Chemicals Ltd., Minoru Co. Ltd. and more....

Table of Contents

1           INTRODUCTION
1.1        Thermal Management-active and passive
1.2        What are Thermal Interface Materials (TIMs)?
1.2.1     Types
1.2.2     Thermal conductivity
1.3        Comparative properties of TIMs
1.4        Thermal Pads and Thermal Grease
1.5        Advantages and Disadvantages of TIMs, by type
1.6        Performance
1.7        Prices
1.8        Emerging Technologies in TIMs
1.9        Supply Chain for TIMs
1.10      Raw Material Analysis and Pricing
1.11      Environmental Regulations and Sustainability
1.12      System Level Performance
1.13      Thermal Conductivity vs Thermal Resistance
1.14      TIM Chemistry

2           MATERIALS
2.1        Advanced and Multi-Functional TIMs
2.1.1     Carbon-based TIMs
2.1.1.1  Overview
2.1.2     Thermal Conductivity By Filler Type
2.1.3     Thermal Conductivity By Matrix
2.2        TIM fillers
2.2.1     Trends
2.2.2     Pros and Cons
2.2.3     Thermal Conductivity
2.2.4     Spherical Alumina
2.2.5     Alumina Fillers
2.2.6     Boron nitride (BN)
2.2.6.1  Overview
2.2.6.2  Suppliers
2.2.6.3  Nano Boron Nitride
2.2.7     Filler and polymer TIMs
2.2.8     Diamond
2.2.9     Filler Sizes
2.3        Thermal Greases and Pastes
2.3.1     Overview and properties
2.3.2     SWOT analysis
2.4        Thermal Gap Pads
2.4.1     Overview and properties
2.4.2     Application in EV Batteries
2.4.3     Transitioning to Gap fillers from Pads
2.4.4     SWOT analysis
2.5        Thermal Gap Fillers
2.5.1     Overview and properties
2.5.2     Products
2.5.3     SWOT analysis
2.6        Potting Compounds/Encapsulants
2.6.1     Overview and properties
2.6.2     SWOT analysis
2.7        Adhesive Tapes
2.7.1     Overview and properties
2.7.2     Application in EV Batteries
2.7.3     TCA Requirements
2.7.4     SWOT analysis
2.8        Phase Change Materials
2.8.1     Overview
2.8.2     Products
2.8.3     Properties
2.8.4     Types
2.8.4.1  Organic/biobased phase change materials
2.8.4.1.1           Advantages and disadvantages
2.8.4.1.2           Paraffin wax
2.8.4.1.3           Non-Paraffins/Bio-based
2.8.4.2  Inorganic phase change materials
2.8.4.2.1           Salt hydrates
2.8.4.2.1.1      Advantages and disadvantages
2.8.4.2.2           Metal and metal alloy PCMs (High-temperature)
2.8.4.3  Eutectic mixtures
2.8.4.4  Encapsulation of PCMs
2.8.4.4.1           Macroencapsulation
2.8.4.4.2           Micro/nanoencapsulation
2.8.4.5  Nanomaterial phase change materials
2.8.5     Thermal energy storage (TES)
2.8.5.1  Sensible heat storage
2.8.5.2  Latent heat storage
2.8.6     Application in TIMs
2.8.6.1  Thermal pads
2.8.6.2  Low Melting Alloys (LMAs)
2.8.6.3  Thermal storage units
2.8.6.4  Thermal energy storage panels
2.8.6.5  Space systems
2.8.7     SWOT analysis
2.9        Metal-based TIMs
2.9.1     Overview
2.9.1.1  Metal-Based TIM1 and TIM2
2.9.1.2  Metal Filled Polymer TIMs
2.9.2     Solders and low melting temperature alloy TIMs
2.9.2.1  Solder TIM1
2.9.2.2  Sintering
2.9.3     Liquid metals
2.9.3.1  Liquid metal for high-performance GPU
2.9.3.2  Challenges
2.9.4     Solid liquid hybrid (SLH) metals
2.9.4.1  Hybrid liquid metal pastes
2.9.4.2  SLH created during chip assembly (m2TIMs)
2.9.4.3  Die-attach materials
2.9.4.3.1           Solder Alloys and Conductive Adhesives
2.9.4.3.2           Silver-Sintered Paste
2.9.4.3.3           Copper (Cu) sintered TIMs
2.9.4.3.3.1      TIM1 - Sintered Copper
2.9.4.3.3.2      Cu Sinter Materials
2.9.4.3.3.3      Copper Sintering Challenges
2.9.4.3.3.4      Commercial Use
2.9.4.3.4           Sintered Copper Die-Bonding Paste
2.9.4.3.4.1      Commercial activity
2.9.4.3.5           Graphene Enhanced Sintered Copper TIMs
2.9.4.4  Laminar Metal Form With High Softness
2.9.5     SWOT analysis
2.10      Carbon-based TIMs
2.10.1   Carbon nanotube (CNT) TIM Fabrication
2.10.2   Challenges
2.10.3   Market players
2.10.4   Multi-walled nanotubes (MWCNT)
2.10.4.1            Properties
2.10.4.2            Application as thermal interface materials
2.10.5   Single-walled carbon nanotubes (SWCNTs)
2.10.5.1            Properties
2.10.5.2            Application as thermal interface materials
2.10.6   Vertically aligned CNTs (VACNTs)
2.10.6.1            Properties
2.10.6.2            Applications
2.10.6.3            Application as thermal interface materials
2.10.7   BN nanotubes (BNNT) and nanosheets (BNNS)
2.10.7.1            Properties
2.10.7.2            Application as thermal interface materials
2.10.8   Graphene
2.10.8.1            Properties
2.10.8.2            Application as thermal interface materials
2.10.8.2.1        Graphene fillers
2.10.8.2.2        Graphene foam
2.10.8.2.3        Graphene aerogel
2.10.8.2.4        Graphene Heat Spreaders
2.10.8.2.5        Graphene in Thermal Interface Pads
2.10.8.3            Advantages of Graphene
2.10.9   Nanodiamonds
2.10.9.1            Properties
2.10.9.2            Application as thermal interface materials
2.10.10              Graphite
2.10.10.1         Properties
2.10.10.2         Natural graphite
2.10.10.2.1     Classification
2.10.10.2.2     Processing
2.10.10.2.3     Flake
2.10.10.2.3.1 Grades
2.10.10.2.3.2 Applications
2.10.10.3         Synthetic graphite
2.10.10.3.1     Classification
2.10.10.3.1.1 Primary synthetic graphite
2.10.10.3.1.2 Secondary synthetic graphite
2.10.10.3.1.3 Processing
2.10.10.4         Applications as thermal interface materials
2.10.10.4.1     Graphite Sheets
2.10.10.4.2     Vertical graphite
2.10.10.4.3     Graphite pastes
2.10.11              Hexagonal Boron Nitride
2.10.11.1         Properties
2.10.11.2         Application as thermal interface materials
2.10.12              SWOT analysis
2.11      Metamaterials
2.11.1   Types and properties
2.11.1.1            Electromagnetic metamaterials
2.11.1.1.1        Double negative (DNG) metamaterials
2.11.1.1.2        Single negative metamaterials
2.11.1.1.3        Electromagnetic bandgap metamaterials (EBG)
2.11.1.1.4        Bi-isotropic and bianisotropic metamaterials
2.11.1.1.5        Chiral metamaterials
2.11.1.1.6        Electromagnetic “Invisibility” cloak
2.11.1.2            Terahertz metamaterials
2.11.1.3            Photonic metamaterials
2.11.1.4            Tunable metamaterials
2.11.1.5            Frequency selective surface (FSS) based metamaterials
2.11.1.6            Nonlinear metamaterials
2.11.1.7            Acoustic metamaterials
2.11.2   Application as thermal interface materials
2.12      Self-healing thermal interface materials
2.12.1   Extrinsic self-healing
2.12.2   Capsule-based
2.12.3   Vascular self-healing
2.12.4   Intrinsic self-healing
2.12.5   Healing volume
2.12.6   Types of self-healing materials, polymers and coatings
2.12.7    Applications in thermal interface materials
2.13       TIM Dispensing
2.13.1    Low-volume Dispensing Methods
2.13.2    High-volume Dispensing Methods
2.13.3    Meter, Mix, Dispense (MMD) Systems
2.13.4    TIM Dispensing Equipment Suppliers

3            MARKETS FOR THERMAL INTERFACE MATERIALS (TIMs)
3.1         Consumer Electronics
3.1.1      Market overview
3.1.1.1   Market drivers
3.1.1.2   Applications
3.1.1.2.1           Smartphones and tablets
3.1.1.2.1.1      Graphitic Heat Spreaders
3.1.1.2.1.2      Liquid metals
3.1.1.2.2           Wearable electronics
3.1.2     Global market 2022-2036, by TIM type
3.2        Electric Vehicles (EV)
3.2.1     Market overview
3.2.1.1  Market drivers
3.2.1.2  Applications
3.2.1.2.1           EV Battery Packs
3.2.1.2.1.1      TIM Pack and Module
3.2.1.2.1.2      TIM Application by Cell Format
3.2.1.2.1.3      Thermal Interface Material Fillers for EV Batteries
3.2.1.2.1.4      TIM Pricing
3.2.1.2.1.5      Companies
3.2.1.2.2           Lithium-ion batteries
3.2.1.2.2.1      Cell-to-pack designs
3.2.1.2.2.2      Cell-to-chassis/body
3.2.1.2.3           Power electronics
3.2.1.2.3.1      Types
3.2.1.2.3.2      Trends
3.2.1.2.3.3      Properties for TIM2 Properties  in EV power electronics
3.2.1.2.3.4      TIM1s
3.2.1.2.3.5      TIM2 in SiC MOSFET
3.2.1.2.4           Charging stations
3.2.2     Global market 2022-2036, by TIM type
3.3         Data Centers
3.3.1      Market overview
3.3.1.1   Market drivers
3.3.1.2   Applications
3.3.1.2.1           Router, switches and line cards
3.3.1.2.1.1      Transceivers
3.3.1.2.1.2      Server Boards
3.3.1.2.1.3      Switches and Routers
3.3.1.2.2           AI Servers
3.3.1.2.2.1      Overview
3.3.1.2.2.2      Trends
3.3.1.2.2.3      TRL
3.3.1.2.2.4      Companies
3.3.1.2.3           Power supply converters
3.3.1.2.3.1      Overview
3.3.1.2.3.2      Laminar metal form TIMs
3.3.1.2.3.3      TIM Consumption in Data Center Power Supplies
3.3.1.2.3.4      Immersion cooling
3.3.2     Global market 2022-2036, by TIM type
3.4        Advanced Semiconductor Packaging
3.4.1     Market Overview
3.4.2     TIM1
3.4.2.1  Indium foil TIM1
3.4.2.2  Products
3.4.2.2.1           Thermal Gel
3.4.2.2.2           Thermal grease
3.4.2.2.3           Graphene
3.4.2.2.4           Liquid metal
3.4.3     Global market 2022-2036, by TIM type
3.5         ADAS Sensors
3.5.1      Market overview
3.5.1.1   Market drivers
3.5.1.1.1           Sensor Suite for Autonomous Cars
3.5.1.1.2           Thermal Management in ADAS Sensors
3.5.1.2   Applications
3.5.1.2.1           ADAS Cameras
3.5.1.2.1.1      Thermal Interface Materials for ADAS Cameras
3.5.1.2.1.2      Commercial examples
3.5.1.2.2           ADAS Radar
3.5.1.2.2.1      Radar technology
3.5.1.2.2.2      Radar boards
3.5.1.2.2.3      Commercial examples
3.5.1.2.3           ADAS LiDAR
3.5.1.2.3.1      Role of TIMs
3.5.1.2.3.2      Commercial examples
3.5.1.2.4           Electronic control units (ECUs) and computers
3.5.1.2.4.1      Overview
3.5.1.2.4.2      Commercial examples
3.5.1.2.5           Die attach materials
3.5.1.2.5.1      Overview
3.5.1.2.5.2      Die Attach for ADAS
3.5.1.2.5.3      Commercial examples
3.5.1.3  Companies
3.5.2     Global market 2022-2036, by TIM type
3.6         EMI shielding
3.6.1      Market overview
3.6.2     TIMs in EMI Shielding
3.6.2.1  Market drivers
3.6.2.2  Applications
3.6.2.2.1           Dielectric Constant
3.6.2.2.2           ADAS
3.6.2.2.2.1      Radar
3.6.2.2.2.2      5G
3.6.2.2.3           Commercial examples
3.7         5G
3.7.1      Market overview
3.7.1.1   Market drivers
3.7.1.2   Applications
3.7.1.2.1           EMI shielding and EMI gaskets
3.7.1.2.2           Antenna
3.7.1.2.3           Base Band Unit (BBU)
3.7.1.2.4           Liquid TIMs
3.7.1.2.5           Power supplies
3.7.1.2.5.1      Increased power consumption in 5G
3.7.2     Market players
3.7.3     Global market 2022-2036, by TIM type
3.8         Aerospace & Defense
3.8.1     Market overview
3.8.1.1  Market drivers
3.8.1.2  Applications
3.8.1.2.1           Satellite thermal management
3.8.1.2.1.1      Temperature range
3.8.1.2.1.2      Heat Spreaders
3.8.1.2.1.3      Carbon fiber reinforced TIM
3.8.1.2.1.4      Thermal pads
3.8.1.2.1.5      Thermal straps
3.8.1.2.1.6      Graphene
3.8.1.2.1.7      Challenges
3.8.1.2.2           Avionics cooling
3.8.1.2.3           Military electronics
3.8.1.3  Global market 2022-2036, by TIM type
3.9         Industrial Electronics
3.9.1      Market overview
3.9.1.1   Market drivers
3.9.1.2   Applications
3.9.1.2.1           Industrial automation
3.9.1.2.2           Power supplies
3.9.1.2.3           Motor drives
3.9.1.2.4           LED lighting
3.9.2     Global market 2022-2036, by TIM type
3.10      Renewable Energy
3.10.1   Market overview
3.10.1.1            Market drivers
3.10.1.2            Applications
3.10.1.2.1        Solar inverters
3.10.1.2.2        Wind power electronics
3.10.1.2.3        Energy storage systems
3.10.2   Global market 2022-2036, by TIM type
3.11      Medical Electronics
3.11.1   Market overview
3.11.1.1            Market drivers
3.11.1.2            Applications
3.11.1.2.1        Diagnostic equipment
3.11.1.2.2        Medical imaging systems
3.11.1.2.3        Patient monitoring devices
3.11.2  Global market 2022-2036, by TIM type

4          COMPANY PROFILES (119 company profiles)5          RESEARCH METHODOLOGY6          REFERENCES
LIST OF TABLES
Table 1. Thermal conductivities (?) of common metallic, carbon, and ceramic fillers employed in TIMs.
Table 2. Commercial TIMs and their properties.
Table 3. Advantages and disadvantages of TIMs, by type.
Table 4. Key Factors in System Level Performance for TIMs.
Table 5. TIM Materials by Thermal, Mechanical, and Application Properties
Table 6. Thermal interface materials prices.
Table 7. Comparisons of Price and Thermal Conductivity for TIMs.
Table 8. Price Comparison of TIM Fillers.
Table 9. Raw Material Analysis and Pricing.
Table 10. Key Factors in System Level Performance.
Table 11. Thermal Conductivity vs Thermal Resistance Comparison.
Table 12. TIM Chemistry Comparison
Table 13. Characteristics of some typical TIMs.
Table 14. Thermal Conductivity By Filler Type
Table 15. Thermal Conductivity By Matrix.
Table 16. Trends on TIM Fillers.
Table 17. Pros and Cons of TIM Fillers.
Table 18. Thermal Conductivity Comparison ATH and Al2O3.
Table 19. BNNT Companies and Prices.
Table 20. Diamond fillers with varied sizes for thermal interface materials.
Table 21. Commercial thermal paste products.
Table 22.Commercial thermal gap pads (thermal interface materials).
Table 23. Commercial thermal gap fillers products.
Table 24. Types of Potting Compounds/Encapsulants.
Table 25. TIM adhesives tapes.
Table 26. Commercial phase change materials (PCM) thermal interface materials (TIMs) products.
Table 27. Properties of PCMs.
Table 28.  PCM Types and properties.
Table 29. Advantages and disadvantages of organic PCMs.
Table 30. Advantages and disadvantages of organic PCM Fatty Acids.
Table 31. Advantages and disadvantages of salt hydrates
Table 32. Advantages and disadvantages of low melting point metals.
Table 33. Advantages and disadvantages of eutectics.
Table 34. Benefits and drawbacks of PCMs in TIMs.
Table 35. PCM selection criteria and considerations for space systems.
Table 36. Filler choice of PCM for space subsystems.
Table 37. Comparison of Carbon-based TIMs.
Table 38. Technology Readiness Level (TRL) for Carbon Materials in Thermal Management
Table 39. Challenges with CNT-TIMs.
Table 40. Market players in CNT-TIMs.
Table 41. Comparison of carbon-based TIMs .
Table 42. Properties of CNTs and comparable materials.
Table 43. Typical properties of SWCNT and MWCNT.
Table 44. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive.
Table 45. Thermal conductivity of CNT-based polymer composites.
Table 46. Comparative properties of BNNTs and CNTs.
Table 47. Properties of graphene, properties of competing materials, applications thereof.
Table 48. Comparison of Conventional and Graphene-Enhanced Thermal Pads.
Table 49. Advantages of Graphene in Thermal Interface Materials
Table 50. Properties of nanodiamonds.
Table 51. Comparison between Natural and Synthetic Graphite.
Table 52. Thermal Conductivity Comparison of Graphite TIMs.
Table 53. Classification of natural graphite with its characteristics.
Table 54. Characteristics of synthetic graphite.
Table 55. Thermal Conductivity Comparison of Graphite TIMs.
Table 56. Properties of hexagonal boron nitride (h-BN).
Table 57. Comparison of self-healing systems.
Table 58. Types of self-healing coatings and materials.
Table 59. Comparative properties of self-healing materials.
Table 60. Challenges for Dispensing TIM.
Table 61. Thermal Management Application Areas in Consumer Electronics.
Table 62. Thermal Management Differences: 4G vs 5G Smartphones.
Table 63. Trends in Smartphone Thermal Materials.
Table 64. Thermal Management approaches in commercial Smartphones.
Table 65. Global market in consumer electronics 2022-2036, by TIM type (millions USD).
Table 66. TIM Pricing by Supplier.
Table 67. Thermal Conductivity Comparison of TIM1s .
Table 68. Global market in electric vehicles 2022-2036, by TIM type (millions USD).
Table 69. Types of TIMs in Data Centers.
Table 70. Emerging Trends in TIM Materials for AI Servers.
Table 71. Applications of TIM Materials in AI Servers with Technology Readiness Levels (TRL).
Table 72. Companies Utilizing and Providing TIM Materials for AI Servers.
Table 73. Companies Utilizing and Providing TIM Materials for AI Servers
Table 74. TIM Trends in Data Centers.
Table 75. TIM Area Forecast in Server Boards: 2022-2036 (m2).
Table 76. Global market in data centers 2022-2036, by TIM type (millions USD).
Table 77. TIM1 and TIM1.5 market size forecast for advanced semiconductor packaging 2026-2036.
Table 78. TIM Players in ADAS.
Table 79. Die Attach for ADAS Sensors.
Table 80. Die Attach Area Forecast for Key Components Within ADAS Sensors: 2022-2036 (m2).
Table 81. TIM Players in ADAS.
Table 82. Global market in ADAS sensors 2022-2036, by TIM type (millions USD).
Table 83. TIM Area Forecast for 5G Antennas by Station Size: 2022-2036 (m2).
Table 84. TIM Area Forecast for 5G Antennas by Station Frequency: 2022-2036 (m2).
Table 85. TIMS in BBU.
Table 86. 5G BBY models.
Table 87. TIM Area Forecast for 5G BBU: 2022-2036 (m2).
Table 88. Power Consumption Forecast for 5G: 2022-2036 (GW).
Table 89. TIM Area Forecast for Power Supplies: 2022-2036 (m2).
Table 90. TIM market players in 5G.
Table 91. Global market in 5G 2022-2036, by TIM type (millions USD).
Table 92. Market Drivers for TIMS in aerospace and defense.
Table 93. Applications for TIMS in aerospace and defense.
Table 94. Temperature range of space subsystems and passive cooling approaches.
Table 95. TIMs for space satellites - challenges and considerations .
Table 96. Global Market for TIMs in aerospace and defense 2022-2036, by TIM Type (Millions USD).
Table 97. Market Drivers for TIMs in industrial electronics.
Table 98. Applications for TIMs in industrial electronics.
Table 99. Global Market 2022-2036, by TIM Type in Industrial Electronics (Millions USD).
Table 100. Market Drivers for TIMs in renewable energy.
Table 101. Applications for TIMs in renewable energy.
Table 102. Global Market for TIMs in Renewable Energy 2022-2036 (Millions USD).
Table 103. Market Drivers for TIMs in medical electronics.
Table 104. Applications for TIMs in medical electronics.
Table 105. Global Market 2022-2036 for TIMs in Medical Electronics (Millions USD).

LIST OF FIGURES
Figure 1. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material.
Figure 2. Schematic of thermal interface materials used in a flip chip package.
Figure 3. Thermal grease.
Figure 4. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.
Figure 5. Supply Chain for TIMs.
Figure 6. Commercial thermal paste products.
Figure 7. Application of thermal silicone grease.
Figure 8. A range of thermal grease products.
Figure 9. SWOT analysis for thermal greases and pastes.
Figure 10. Thermal Pad.
Figure 11. SWOT analysis for thermal gap pads.
Figure 12. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.
Figure 13. SWOT analysis for thermal gap fillers.
Figure 14. SWOT analysis for Potting compounds/encapsulants.
Figure 15. Thermal adhesive products.
Figure 16. SWOT analysis for TIM adhesives tapes.
Figure 17. Phase-change TIM products.
Figure 18. PCM mode of operation.
Figure 19. Classification of PCMs.
Figure 20. Phase-change materials in their original states.
Figure 21. Thermal energy storage materials.
Figure 22. Phase Change Material transient behaviour.
Figure 23. PCM TIMs.
Figure 24. Phase Change Material - die cut pads ready for assembly.
Figure 25. SWOT analysis for phase change materials.
Figure 26. Typical IC package construction identifying TIM1 and TIM2
Figure 27. Liquid metal TIM product.
Figure 28. Pre-mixed SLH.
Figure 29. HLM paste and Liquid Metal Before and After Thermal Cycling.
Figure 30.  SLH with Solid Solder Preform.
Figure 31. Automated process for SLH with solid solder preforms and liquid metal.
Figure 32. SWOT analysis for metal-based TIMs.
Figure 33. Schematic of single-walled carbon nanotube.
Figure 34. Types of single-walled carbon nanotubes.
Figure 35. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.
Figure 36. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.
Figure 37. Graphene layer structure schematic.
Figure 38. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.
Figure 39. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.
Figure 40. Flake graphite.
Figure 41. Applications of flake graphite.
Figure 42. Graphite-based TIM products.
Figure 43. Structure of hexagonal boron nitride.
Figure 44. SWOT analysis for carbon-based TIMs.
Figure 45. Classification of metamaterials based on functionalities.
Figure 46. Electromagnetic metamaterial.
Figure 47. Schematic of Electromagnetic Band Gap (EBG) structure.
Figure 48. Schematic of chiral metamaterials.
Figure 49. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.
Figure 50. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.
Figure 51. Stages of self-healing mechanism.
Figure 52. Self-healing mechanism in vascular self-healing systems.
Figure 53. Schematic of TIM operation in electronic devices.
Figure 54. Schematic of Thermal Management Materials in smartphone.
Figure 55. Wearable technology inventions.
Figure 56. Global market in consumer electronics 2022-2036, by TIM type (millions USD).
Figure 57. Application of thermal interface materials in automobiles.
Figure 58. EV battery components including TIMs.
Figure 59. Battery pack with a cell-to-pack design and prismatic cells.
Figure 60. Cell-to-chassis battery pack.
Figure 61. TIMS in EV charging station.
Figure 62. Global market in electric vehicles 2022-2036, by TIM type (millions USD).
Figure 63. Image of data center layout.
Figure 64. Application of TIMs in line card.
Figure 65. Global market in data centers 2022-2036, by TIM type (millions USD).
Figure 66. TIM1 and TIM1.5 market size forecast for advanced semiconductor packaging 2026-2036.
Figure 67. ADAS radar unit incorporating TIMs.
Figure 68. Global market in ADAS sensors 2022-2036, by TIM type (millions USD).
Figure 69. Coolzorb 5G.
Figure 70. TIMs in Base Band Unit (BBU).
Figure 71. Global market in 5G 2022-2036, by TIM type (millions USD).
Figure 72. Boron Nitride Nanotubes products.
Figure 73. Transtherm® PCMs.
Figure 74. Carbice carbon nanotubes.
Figure 75.  Internal structure of carbon nanotube adhesive sheet.
Figure 76. Carbon nanotube adhesive sheet.
Figure 77. HI-FLOW Phase Change Materials.
Figure 78. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface.
Figure 79. Parker Chomerics THERM-A-GAP GEL.
Figure 80. Metamaterial structure used to control thermal emission.
Figure 81. Shinko Carbon Nanotube TIM product.
Figure 82. The Sixth Element graphene products.
Figure 83. Thermal conductive graphene film.
Figure 84. VB Series of TIMS from Zeon.

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • 3M
  • ADA Technologies
  • Aismalibar S.A.
  • AI Technology Inc.
  • Alpha Assembly
  • AluChem
  • AOK Technologies
  • AOS Thermal Compounds LLC
  • Arkema
  • Arieca Inc.
  • ATP Adhesive Systems AG
  • Aztrong Inc.
  • Bando Chemical Industries Ltd.
  • Bdtronic
  • BestGraphene
  • BNNano
  • BNNT LLC
  • Boyd Corporation
  • BYK
  • Cambridge Nanotherm
  • Carbice Corp.
  • Carbon Waters
  • Carbodeon Ltd. Oy
  • CondAlign AS
  • Denka Company Limited
  • Detakta Isolier- und Messtechnik GmbH & Co. KG
  • Dexerials Corporation
  • Deyang Carbonene Technology
  • Dow Corning
  • Dowa Electronics Materials Co. Ltd.
  • DuPont (Laird Performance Materials)
  • Dymax Corporation
  • Dynex Semiconductor (CRRC)
  • ELANTAS Europe GmbH
  • Elkem Silicones
  • Enerdyne Thermal Solutions Inc.
  • Epoxies Etc.
  • First Graphene Ltd.
  • Fujipoly
  • Fujitsu Laboratories
  • GCS Thermal
  • GLPOLY
  • Global Graphene Group
  • Goodfellow Corporation
  • Graphmatech AB
  • GuangDong KingBali New Material Co. Ltd.
  • HALA Contec GmbH & Co. KG
  • Hamamatsu Carbonics Corporation
  • H.B. Fuller Company
  • Henkel AG & Co. KGAA
  • Hitek Electronic Materials
  • Honeywell
  • Hongfucheng New Materials
  • Huber Martinswerk
  • HyMet Thermal Interfaces SIA
  • Indium Corporation
  • Inkron
  • KB Element
  • Kerafol Keramische Folien GmbH & Co. KG
  • Kitagawa
  • KULR Technology Group Inc.
  • Kyocera
  • Laird
  • Leader Tech Inc.
  • LiSAT
  • LiquidCool Solutions
  • Liquid Wire Inc.
  • MacDermid Alpha
  • MG Chemicals Ltd.
  • Minoru Co. Ltd.