The Global Micro Computed Tomography Market was valued at USD 276.9 million in 2024 and is estimated to grow at a CAGR of 8.2% to reach USD 604.8 million by 2034. Micro computed tomography (micro-CT) is a powerful imaging technology that delivers ultra-high-resolution 3D images of internal structures, enabling unmatched accuracy and detail. The increasing demand for advanced imaging solutions across both industrial and scientific applications is driving substantial growth in this market.
Micro-CT systems offer non-destructive testing capabilities that are especially valuable in industries requiring high levels of quality assurance, such as aerospace, automotive, and electronics. With ongoing technological advancements, including faster scan times, improved resolution, and more compact systems, micro-CT is evolving into a highly versatile tool. It not only supports critical R&D activities but also plays a pivotal role in the commercialization of new materials and products. The integration of AI and machine learning for automated image analysis is further enhancing the efficiency and accuracy of micro-CT systems, making them even more indispensable across diverse sectors.
Initially developed for biomedical and healthcare imaging, micro-CT has significantly broadened its reach over the years. The ability to visualize microstructures in 3D without damaging the object makes it ideal for use in material science, biology, electronics, and geological research. The growing emphasis on precision engineering and quality control across manufacturing environments is amplifying the demand for micro-CT systems worldwide. Moreover, the surge in pharmaceutical and biotech research, especially in preclinical studies and drug development, has fueled widespread adoption in life sciences.
The market is segmented by product type into in vivo and ex vivo micro-CT. In 2024, the ex vivo micro-CT segment accounted for a dominant 77.2% share. Ex vivo systems are widely used in material science, biology, and healthcare imaging for their ability to scan extracted samples with extreme clarity. These systems are particularly beneficial for researchers who need detailed internal imaging of biological specimens or structural materials without altering or destroying them. The ultra-high-resolution imaging they offer is critical in exploring microscopic details in various applications.
Micro-CT serves several key applications, including life science, dentistry, bone research, plant and food analysis, material science, and geology or oil and gas. In 2024, the life science segment led the market with a 38.2% share. The ability of micro-CT to offer detailed, non-invasive 3D visualization of tissues and organs makes it crucial in fields like oncology, cardiology, and neurology. It supports the entire research lifecycle from hypothesis testing to validation in drug development and disease modeling.
The U.S. Micro Computed Tomography Market generated USD 97.5 million in 2023 and is anticipated to reach USD 227.7 million by 2034. Robust R&D investments, adoption of advanced diagnostic tools, and growing industrial applications continue to drive market expansion in the country.
Key players shaping the competitive landscape include Bruker, PerkinElmer, Zeiss, TESCAN, Shimadzu, Micro Photonics, Rigaku, North Star Imaging, Delta Electronics, NeoScan, SCANCO Medical, and Sanying Precision Instruments. These companies are investing heavily in R&D and expanding their product portfolios to include systems with superior resolution, faster scanning speeds, and user-friendly features. Strategic partnerships with academic institutions and industry stakeholders are also playing a central role in extending their global footprint and enhancing innovation.
This product will be delivered within 2-4 business days.
Micro-CT systems offer non-destructive testing capabilities that are especially valuable in industries requiring high levels of quality assurance, such as aerospace, automotive, and electronics. With ongoing technological advancements, including faster scan times, improved resolution, and more compact systems, micro-CT is evolving into a highly versatile tool. It not only supports critical R&D activities but also plays a pivotal role in the commercialization of new materials and products. The integration of AI and machine learning for automated image analysis is further enhancing the efficiency and accuracy of micro-CT systems, making them even more indispensable across diverse sectors.
Initially developed for biomedical and healthcare imaging, micro-CT has significantly broadened its reach over the years. The ability to visualize microstructures in 3D without damaging the object makes it ideal for use in material science, biology, electronics, and geological research. The growing emphasis on precision engineering and quality control across manufacturing environments is amplifying the demand for micro-CT systems worldwide. Moreover, the surge in pharmaceutical and biotech research, especially in preclinical studies and drug development, has fueled widespread adoption in life sciences.
The market is segmented by product type into in vivo and ex vivo micro-CT. In 2024, the ex vivo micro-CT segment accounted for a dominant 77.2% share. Ex vivo systems are widely used in material science, biology, and healthcare imaging for their ability to scan extracted samples with extreme clarity. These systems are particularly beneficial for researchers who need detailed internal imaging of biological specimens or structural materials without altering or destroying them. The ultra-high-resolution imaging they offer is critical in exploring microscopic details in various applications.
Micro-CT serves several key applications, including life science, dentistry, bone research, plant and food analysis, material science, and geology or oil and gas. In 2024, the life science segment led the market with a 38.2% share. The ability of micro-CT to offer detailed, non-invasive 3D visualization of tissues and organs makes it crucial in fields like oncology, cardiology, and neurology. It supports the entire research lifecycle from hypothesis testing to validation in drug development and disease modeling.
The U.S. Micro Computed Tomography Market generated USD 97.5 million in 2023 and is anticipated to reach USD 227.7 million by 2034. Robust R&D investments, adoption of advanced diagnostic tools, and growing industrial applications continue to drive market expansion in the country.
Key players shaping the competitive landscape include Bruker, PerkinElmer, Zeiss, TESCAN, Shimadzu, Micro Photonics, Rigaku, North Star Imaging, Delta Electronics, NeoScan, SCANCO Medical, and Sanying Precision Instruments. These companies are investing heavily in R&D and expanding their product portfolios to include systems with superior resolution, faster scanning speeds, and user-friendly features. Strategic partnerships with academic institutions and industry stakeholders are also playing a central role in extending their global footprint and enhancing innovation.
Comprehensive Market Analysis and Forecast
- Industry trends, key growth drivers, challenges, future opportunities, and regulatory landscape
- Competitive landscape with Porter’s Five Forces and PESTEL analysis
- Market size, segmentation, and regional forecasts
- In-depth company profiles, business strategies, financial insights, and SWOT analysis
This product will be delivered within 2-4 business days.
Table of Contents
Chapter 1 Methodology and Scope
Chapter 2 Executive Summary
Chapter 3 Industry Insights
Chapter 4 Competitive Landscape, 2024
Chapter 5 Market Estimates and Forecast, By Product Type, 2021-2034 ($ Mn)
Chapter 6 Market Estimates and Forecast, By Application, 2021-2034 ($ Mn)
Chapter 7 Market Estimates and Forecast, By End Use, 2021-2034 ($ Mn)
Chapter 8 Market Estimates and Forecast, By Region, 2021-2034 ($ Mn)
Chapter 9 Company Profiles
Companies Mentioned
The companies featured in this Micro Computed Tomography market report include:- Bruker
- PerkinElmer
- Delta Electronics
- Zeiss
- NeoScan
- Sanying Precision Instruments
- North Star Imaging
- SCANCO Medical
- TESCAN
- Micro Photonics
- Shimadzu
- Rigaku
Table Information
Report Attribute | Details |
---|---|
No. of Pages | 132 |
Published | April 2025 |
Forecast Period | 2024 - 2034 |
Estimated Market Value ( USD | $ 276.9 Million |
Forecasted Market Value ( USD | $ 604.8 Million |
Compound Annual Growth Rate | 8.2% |
Regions Covered | Global |
No. of Companies Mentioned | 13 |