+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Automated Cell Shakers Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2020-2030F

  • PDF Icon

    Report

  • 183 Pages
  • June 2025
  • Region: Global
  • TechSci Research
  • ID: 6102029
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Automated Cell Shakers Market was valued at USD 0.70 Billion in 2024, and is expected to reach USD 1.05 Billion by 2030, rising at a CAGR of 7.08%. Market growth is being fueled by rising investments in laboratory automation and bioprocessing technologies. Automated cell shakers are integral to enhancing consistency and efficiency in workflows such as microbial fermentation, protein expression, and cell culture.

The expanding biopharmaceutical sector - particularly in scaling biologics production - and increased demand from academic and research institutions for high-throughput screening are key growth drivers. Favorable government funding in life sciences, along with the growing focus on personalized medicine and regenerative therapies, is supporting the adoption of advanced shakers equipped with temperature regulation, contamination control, and precision agitation. These innovations are enabling reproducible and GMP-compliant cell culture environments essential for next-generation therapies and drug development.

Key Market Drivers

Growing Demand for Biopharmaceuticals and Cell-Based Therapies

The increasing need for biopharmaceuticals and cell-based treatments is a major growth driver in the Global Automated Cell Shakers Market. In the U.S., biopharma venture capital surged to USD 27 billion in 2024, up from USD 23.2 billion in 2023, reflecting ongoing investment in biologics, gene therapies, and other advanced therapeutics. These therapies demand controlled and reproducible cell culture processes, which automated shakers facilitate by offering consistent agitation, gas exchange, and temperature control. This ensures the viability and quality of cells under GMP standards. Cell-based applications like CAR T therapy and stem cell expansion rely on delicate culturing conditions. For instance, the FDA’s 2024 approval of lifileucel for melanoma underscores the growing relevance of cell therapies. Automated shakers minimize contamination risk and human error while enabling scale-up, enhancing operational efficiency, and reducing time to market.

Key Market Challenges

High Capital Investment and Operating Costs

A significant hurdle in the Global Automated Cell Shakers Market is the high upfront and operational costs associated with advanced equipment. Features such as programmable controls, integrated environmental systems, and smart connectivity elevate production and retail prices. This presents challenges for smaller labs, universities, and early-stage biotech firms that may lack the financial resources to invest in such systems. The need for multiple units in parallel processes further escalates cost concerns.

Operational challenges include routine calibration, preventative maintenance, and occasional specialized servicing. Downtime from equipment failure can disrupt time-sensitive workflows and generate unexpected expenses. Additionally, personnel may require technical training or vendor certification to manage these complex systems. In incubated models, high energy consumption further increases long-term utility costs. Limited technical support in certain regions may prolong repair times, affecting equipment lifespan and operational continuity.

Key Market Trends

Smart Connectivity & Digital Integration

A key trend in the Global Automated Cell Shakers Market is the adoption of smart connectivity and digital integration, turning conventional lab devices into intelligent systems. The inclusion of IoT, cloud computing, and advanced software is enabling real-time data monitoring, remote control, and automated record keeping. These features allow researchers to optimize culture conditions, detect deviations, and improve reproducibility.

Integration with LIMS (Laboratory Information Management Systems) streamlines data workflows, minimizes manual entry errors, and supports regulatory documentation, especially in GMP environments. Cloud-based accessibility enables remote oversight of shaker performance, including speed, temperature, and culture metrics. Predictive maintenance powered by operational data analytics alerts users to potential issues before failures occur, thereby reducing downtime and maintenance costs. This transformation enhances lab efficiency and ensures long-term reliability.

Key Market Players

  • Thermo Fisher Scientific Inc.
  • Eppendorf AG
  • Ohaus Corporation
  • Benchmark Scientific
  • Corning Incorporated
  • Grant Instruments
  • Kuhner Shaker
  • Infors AG
  • Boekel Scientific
  • VELP Scientifica Srl

Report Scope:

In this report, the Global Automated Cell Shakers Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automated Cell Shakers Market, By Product:

  • Automated Cell Shakers
  • Orbital Shakers
  • Benchtop Incubator Shakers
  • Cell Shaker with Rotatory Arms
  • Accessories
  • Others

Automated Cell Shakers Market, By Application:

  • Drug Development
  • Regenerative Medicine
  • Cell Therapy
  • Stem Cell Research

Automated Cell Shakers Market, By End User:

  • Pharmaceutical Companies
  • Biopharmaceutical Companies
  • CDMOs & CMOs
  • Hospitals
  • Others

Automated Cell Shakers Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automated Cell Shakers Market.

Available Customizations:

With the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report.

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, and Trends
4. Voice of Customer
5. Global Automated Cell Shakers Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Product (Automated Cell Shakers, Orbital Shakers, Benchtop Incubator Shakers, Cell Shaker with Rotatory Arms, Accessories, Others)
5.2.2. By Application (Drug Development, Regenerative Medicine, Cell Therapy, Stem Cell Research)
5.2.3. By End User (Pharmaceutical Companies, Biopharmaceutical Companies, CDMOs & CMOs, Hospitals, Others)
5.2.4. By Company (2024)
5.2.5. By Region
5.3. Market Map
6. North America Automated Cell Shakers Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Product
6.2.2. By Application
6.2.3. By End User
6.2.4. By Country
6.3. North America: Country Analysis
6.3.1. United States Automated Cell Shakers Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Product
6.3.1.2.2. By Application
6.3.1.2.3. By End User
6.3.2. Mexico Automated Cell Shakers Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Product
6.3.2.2.2. By Application
6.3.2.2.3. By End User
6.3.3. Canada Automated Cell Shakers Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Product
6.3.3.2.2. By Application
6.3.3.2.3. By End User
7. Europe Automated Cell Shakers Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Product
7.2.2. By Application
7.2.3. By End User
7.2.4. By Country
7.3. Europe: Country Analysis
7.3.1. France Automated Cell Shakers Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Product
7.3.1.2.2. By Application
7.3.1.2.3. By End User
7.3.2. Germany Automated Cell Shakers Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Product
7.3.2.2.2. By Application
7.3.2.2.3. By End User
7.3.3. United Kingdom Automated Cell Shakers Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Product
7.3.3.2.2. By Application
7.3.3.2.3. By End User
7.3.4. Italy Automated Cell Shakers Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Product
7.3.4.2.2. By Application
7.3.4.2.3. By End User
7.3.5. Spain Automated Cell Shakers Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Product
7.3.5.2.2. By Application
7.3.5.2.3. By End User
8. Asia-Pacific Automated Cell Shakers Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Product
8.2.2. By Application
8.2.3. By End User
8.2.4. By Country
8.3. Asia-Pacific: Country Analysis
8.3.1. China Automated Cell Shakers Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Product
8.3.1.2.2. By Application
8.3.1.2.3. By End User
8.3.2. India Automated Cell Shakers Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Product
8.3.2.2.2. By Application
8.3.2.2.3. By End User
8.3.3. South Korea Automated Cell Shakers Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Product
8.3.3.2.2. By Application
8.3.3.2.3. By End User
8.3.4. Japan Automated Cell Shakers Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Product
8.3.4.2.2. By Application
8.3.4.2.3. By End User
8.3.5. Australia Automated Cell Shakers Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Product
8.3.5.2.2. By Application
8.3.5.2.3. By End User
9. South America Automated Cell Shakers Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Product
9.2.2. By Application
9.2.3. By End User
9.2.4. By Country
9.3. South America: Country Analysis
9.3.1. Brazil Automated Cell Shakers Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Product
9.3.1.2.2. By Application
9.3.1.2.3. By End User
9.3.2. Argentina Automated Cell Shakers Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Product
9.3.2.2.2. By Application
9.3.2.2.3. By End User
9.3.3. Colombia Automated Cell Shakers Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Product
9.3.3.2.2. By Application
9.3.3.2.3. By End User
10. Middle East and Africa Automated Cell Shakers Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Product
10.2.2. By Application
10.2.3. By End User
10.2.4. By Country
10.3. MEA: Country Analysis
10.3.1. South Africa Automated Cell Shakers Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Product
10.3.1.2.2. By Application
10.3.1.2.3. By End User
10.3.2. Saudi Arabia Automated Cell Shakers Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Product
10.3.2.2.2. By Application
10.3.2.2.3. By End User
10.3.3. UAE Automated Cell Shakers Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Product
10.3.3.2.2. By Application
10.3.3.2.3. By End User
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
12.1. Merger & Acquisition (If Any)
12.2. Product Launches (If Any)
12.3. Recent Developments
13. Disruptions: Conflicts, Pandemics and Trade Barriers
14. Porters Five Forces Analysis
14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Products
15. Competitive Landscape
15.1. Thermo Fisher Scientific Inc.
15.1.1. Business Overview
15.1.2. Company Snapshot
15.1.3. Products & Services
15.1.4. Financials (As Reported)
15.1.5. Recent Developments
15.1.6. Key Personnel Details
15.1.7. SWOT Analysis
15.2. Eppendorf AG
15.3. Ohaus Corporation
15.4. Benchmark Scientific
15.5. Corning Incorporated
15.6. Grant Instruments
15.7. Kuhner Shaker
15.8. Infors AG
15.9. Boekel Scientific
15.10. VELP Scientifica Srl
16. Strategic Recommendations17. About the Publisher & Disclaimer

Companies Mentioned

  • Thermo Fisher Scientific Inc.
  • Eppendorf AG
  • Ohaus Corporation
  • Benchmark Scientific
  • Corning Incorporated
  • Grant Instruments
  • Kuhner Shaker
  • Infors AG
  • Boekel Scientific
  • VELP Scientifica Srl

Table Information