+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Industrial Waste-to-Energy Plant Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2020-2030F

  • PDF Icon

    Report

  • 188 Pages
  • June 2025
  • Region: Global
  • TechSci Research
  • ID: 6102050
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Industrial Waste-to-Energy Plant Market was valued at USD 18.4 Billion in 2024, and is expected to reach USD 29.3 Billion by 2030, rising at a CAGR of 7.90%. Market growth is primarily driven by rising industrialization and urbanization, which have significantly increased waste generation and the demand for sustainable disposal solutions. Governments and industries are turning to WtE technologies as a dual solution for managing industrial waste and generating renewable energy. Supportive regulatory frameworks, including landfill diversion policies, emission reduction mandates, and renewable energy incentives, are fostering investment in WtE projects globally.

Technological progress in incineration, gasification, and anaerobic digestion is enhancing energy recovery rates and reducing emissions, improving both efficiency and cost-effectiveness. The shift toward circular economy models and resource recovery is also contributing to market expansion, as WtE systems allow for the generation of electricity, heat, and biofuels from waste streams. Additionally, strong investment flows and increased public-private partnerships, especially in developing economies, are accelerating project deployment and infrastructure development.

Key Market Drivers

Government Regulations and Supportive Policies

Stringent environmental regulations and favorable policy measures are key drivers propelling the global industrial WtE plant market. Governments worldwide are implementing directives aimed at minimizing landfill dependency, reducing greenhouse gas emissions, and promoting renewable energy integration. These include renewable portfolio standards, landfill diversion mandates, and carbon taxation schemes that encourage the adoption of energy-from-waste solutions.

To further stimulate adoption, various financial incentives - such as feed-in tariffs, tax credits, grants, and concessional loans - are being offered to WtE developers. Countries across the EU have implemented landfill taxes, while nations like China and India are advancing WtE through subsidies aligned with national energy and environmental targets. These policy frameworks are making WtE infrastructure projects more economically viable and appealing to investors.

Key Market Challenges

High Capital and Operational Costs

The development and operation of industrial WtE plants present notable financial challenges. High capital expenditures are required for land acquisition, construction, equipment, emissions control systems, and compliance with regulatory standards. Depending on the chosen technology - be it thermal, biological, or physical - the initial setup costs can be substantial.

Operationally, the complexity of handling diverse and often non-uniform industrial waste streams necessitates pre-treatment, skilled labor, and ongoing maintenance, all of which elevate costs. Moreover, WtE projects often have higher per-unit energy generation costs compared to traditional fossil fuels or other renewable sources such as wind and solar. This cost disparity, combined with long ROI periods, poses a barrier to broader market penetration, particularly in cost-sensitive regions.

Key Market Trends

Technological Advancements Driving Efficiency and Sustainability

Advances in WtE technologies are significantly influencing market evolution. Next-generation thermal processes such as gasification, pyrolysis, and plasma arc gasification are delivering improved energy efficiency and reduced emissions compared to conventional incineration. These innovations support compliance with stricter environmental regulations while enhancing overall plant performance.

Biological technologies like anaerobic digestion are gaining popularity for managing organic industrial waste, generating biogas for electricity, heat, or upgraded biomethane. The integration of digital technologies - including AI, IoT, and data analytics - is transforming operations by enabling predictive maintenance, optimizing combustion processes, and enhancing environmental monitoring. Smart pre-treatment and sorting systems are improving feedstock quality and energy output, aligning with industry goals of efficiency, sustainability, and circular resource utilization.

Key Market Players

  • Veolia Environnement S.A.
  • Suez S.A.
  • Covanta Holding Corporation
  • Babcock & Wilcox Enterprises, Inc.
  • Hitachi Zosen Inova AG
  • Mitsubishi Heavy Industries, Ltd.
  • Wheelabrator Technologies Inc.
  • China Everbright Environment Group Limited

Report Scope:

In this report, the Global Industrial Waste-to-Energy Plant Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Industrial Waste-to-Energy Plant Market, By Technology Type:

  • Thermal Technologies
  • Biological Technologies
  • Physical Technologies

Industrial Waste-to-Energy Plant Market, By Application:

  • Manufacturing
  • Chemical & Petrochemical
  • Food & Beverage Processing
  • Textile Industry
  • Metals & Mining
  • Others

Industrial Waste-to-Energy Plant Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Asia Pacific
  • China
  • India
  • Japan
  • South Korea
  • Australia
  • South America
  • Brazil
  • Colombia
  • Argentina
  • Middle East & Africa
  • Saudi Arabia
  • UAE
  • South Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Industrial Waste-to-Energy Plant Market.

Available Customizations:

With the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report.

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, and Trends
4. Voice of Customer
5. Global Industrial Waste-to-Energy Plant Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Technology Type (Thermal Technologies, Biological Technologies, Physical Technologies)
5.2.2. By Application (Manufacturing, Chemical & Petrochemical, Food & Beverage Processing, Textile Industry, Metals & Mining, Others)
5.2.3. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
5.3. By Company (2024)
5.4. Market Map
6. North America Industrial Waste-to-Energy Plant Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Technology Type
6.2.2. By Application
6.2.3. By Country
6.3. North America: Country Analysis
6.3.1. United States Industrial Waste-to-Energy Plant Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Technology Type
6.3.1.2.2. By Application
6.3.2. Canada Industrial Waste-to-Energy Plant Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Technology Type
6.3.2.2.2. By Application
6.3.3. Mexico Industrial Waste-to-Energy Plant Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Technology Type
6.3.3.2.2. By Application
7. Europe Industrial Waste-to-Energy Plant Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Technology Type
7.2.2. By Application
7.2.3. By Country
7.3. Europe: Country Analysis
7.3.1. Germany Industrial Waste-to-Energy Plant Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Technology Type
7.3.1.2.2. By Application
7.3.2. France Industrial Waste-to-Energy Plant Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Technology Type
7.3.2.2.2. By Application
7.3.3. United Kingdom Industrial Waste-to-Energy Plant Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Technology Type
7.3.3.2.2. By Application
7.3.4. Italy Industrial Waste-to-Energy Plant Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Technology Type
7.3.4.2.2. By Application
7.3.5. Spain Industrial Waste-to-Energy Plant Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Technology Type
7.3.5.2.2. By Application
8. Asia Pacific Industrial Waste-to-Energy Plant Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Technology Type
8.2.2. By Application
8.2.3. By Country
8.3. Asia Pacific: Country Analysis
8.3.1. China Industrial Waste-to-Energy Plant Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Technology Type
8.3.1.2.2. By Application
8.3.2. India Industrial Waste-to-Energy Plant Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Technology Type
8.3.2.2.2. By Application
8.3.3. Japan Industrial Waste-to-Energy Plant Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Technology Type
8.3.3.2.2. By Application
8.3.4. South Korea Industrial Waste-to-Energy Plant Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Technology Type
8.3.4.2.2. By Application
8.3.5. Australia Industrial Waste-to-Energy Plant Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Technology Type
8.3.5.2.2. By Application
9. Middle East & Africa Industrial Waste-to-Energy Plant Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Technology Type
9.2.2. By Application
9.2.3. By Country
9.3. Middle East & Africa: Country Analysis
9.3.1. Saudi Arabia Industrial Waste-to-Energy Plant Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Technology Type
9.3.1.2.2. By Application
9.3.2. UAE Industrial Waste-to-Energy Plant Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Technology Type
9.3.2.2.2. By Application
9.3.3. South Africa Industrial Waste-to-Energy Plant Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Technology Type
9.3.3.2.2. By Application
10. South America Industrial Waste-to-Energy Plant Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Technology Type
10.2.2. By Application
10.2.3. By Country
10.3. South America: Country Analysis
10.3.1. Brazil Industrial Waste-to-Energy Plant Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Technology Type
10.3.1.2.2. By Application
10.3.2. Colombia Industrial Waste-to-Energy Plant Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Technology Type
10.3.2.2.2. By Application
10.3.3. Argentina Industrial Waste-to-Energy Plant Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Technology Type
10.3.3.2.2. By Application
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends and Developments
12.1. Merger & Acquisition (If Any)
12.2. Product Launches (If Any)
12.3. Recent Developments
13. Company Profiles
13.1. Veolia Environnement S.A.
13.1.1. Business Overview
13.1.2. Key Revenue and Financials
13.1.3. Recent Developments
13.1.4. Key Personnel
13.1.5. Key Product/Services Offered
13.2. Suez S.A.
13.3. Covanta Holding Corporation
13.4. Babcock & Wilcox Enterprises, Inc.
13.5. Hitachi Zosen Inova AG
13.6. Mitsubishi Heavy Industries, Ltd.
13.7. Wheelabrator Technologies Inc.
13.8. China Everbright Environment Group Limited
14. Strategic Recommendations15. About the Publisher & Disclaimer

Companies Mentioned

  • Veolia Environnement S.A.
  • Suez S.A.
  • Covanta Holding Corporation
  • Babcock & Wilcox Enterprises, Inc.
  • Hitachi Zosen Inova AG
  • Mitsubishi Heavy Industries, Ltd.
  • Wheelabrator Technologies Inc.
  • China Everbright Environment Group Limited

Table Information