+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Parabolic Trough Concentrated Solar Power(CSP) Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2020-2031F

  • PDF Icon

    Report

  • 185 Pages
  • July 2025
  • Region: Global
  • TechSci Research
  • ID: 6114994
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Parabolic Trough Concentrated Solar Power(CSP) Market was valued at USD 4.58 Billion in 2024, and is expected to reach USD 8.31 Billion by 2030, rising at a CAGR of 10.28%.

The Parabolic Trough Concentrated Solar Power (CSP) Market refers to the industry focused on generating electricity using parabolic trough solar collectors, a technology that concentrates sunlight onto a receiver tube positioned along the focal line of a curved mirror. This concentrated solar energy heats a heat transfer fluid, typically synthetic oil or molten salt, which is then used to produce steam that drives a turbine connected to a generator. Parabolic trough systems are the most mature and widely deployed form of concentrated solar power technology, offering proven performance and scalability for utility-scale solar thermal power generation.

The market is witnessing significant growth due to the rising global emphasis on reducing greenhouse gas emissions and transitioning to sustainable energy sources. Governments across various regions are implementing supportive regulatory frameworks, including tax incentives, feed-in tariffs, and renewable energy targets, which are encouraging investments in large-scale CSP projects. The unique advantage of parabolic trough CSP technology lies in its ability to integrate thermal energy storage systems, allowing for electricity generation even during cloudy periods or after sunset. This feature addresses one of the key challenges of renewable energy - intermittency - making CSP a reliable source of dispatchable power.

Key Market Drivers

Growing Global Demand for Renewable Energy to Achieve Decarbonization Targets

The Parabolic Trough Concentrated Solar Power Market is experiencing significant growth due to the escalating global demand for renewable energy sources to meet ambitious decarbonization targets set by governments and international agreements, such as the Paris Agreement’s goal to limit global warming to 1.5°C. Parabolic trough concentrated solar power systems, which use curved mirrors to focus sunlight onto a receiver tube to generate high-temperature heat for electricity production, offer a reliable and dispatchable renewable energy solution, particularly in regions with high direct normal irradiance (DNI).

The International Renewable Energy Agency (IRENA) projects that renewable energy must account for 90% of global electricity by 2050 to achieve net-zero emissions, with solar technologies, including concentrated solar power, playing a critical role. Unlike photovoltaic systems, parabolic trough concentrated solar power systems can integrate thermal energy storage (TES), typically using molten salts, to provide electricity during non-sunlight hours, enhancing grid stability and meeting peak demand.

This dispatchability makes parabolic trough systems attractive for countries like Spain, the United States, and emerging markets in the Middle East and North Africa (MENA), where solar resources are abundant. Governments are incentivizing concentrated solar power deployment through feed-in tariffs, tax credits, and renewable portfolio standards, driving market expansion. For instance, Morocco’s Noor Complex, one of the world’s largest concentrated solar power facilities, leverages parabolic trough technology to supply 580 MW, supporting national renewable energy goals. The push for energy security, particularly in the wake of fossil fuel price volatility and geopolitical supply chain disruptions, further accelerates the adoption of indigenous renewable technologies.

The Parabolic Trough Concentrated Solar Power Market benefits from this trend, as utilities and independent power producers invest in large-scale projects to diversify energy portfolios and reduce carbon footprints. Additionally, the technology’s ability to provide hybrid solutions, integrating with fossil fuel or biomass systems, enhances its appeal in transitional energy markets. Developing nations, such as India and Chile, are emerging as key markets due to favorable solar conditions and supportive policies, creating opportunities for technology providers and project developers.

The market is further bolstered by international financing from institutions like the World Bank and the African Development Bank, which fund concentrated solar power projects to promote sustainable development. As global energy systems transition toward low-carbon solutions, the Parabolic Trough Concentrated Solar Power Market is poised for sustained growth, driven by its alignment with environmental imperatives and its unique ability to deliver reliable, dispatchable renewable energy.

By 2023, global concentrated solar power (CSP) capacity reached 6.5 gigawatts, with parabolic trough systems comprising approximately 70% of total installations. This growth has been largely driven by the rising demand for renewable energy solutions to support global decarbonization goals. Parabolic trough technology remains the dominant CSP configuration due to its proven reliability and compatibility with thermal energy storage. As countries aim to reduce carbon emissions, CSP continues to gain traction as a dispatchable and sustainable energy source.

Key Market Challenges

High Capital Expenditure and Lengthy Payback Periods

One of the most significant challenges facing the Parabolic Trough Concentrated Solar Power Market is the high capital expenditure required for project development, construction, and commissioning. Parabolic trough systems demand substantial upfront investments due to the extensive infrastructure, complex engineering, and specialized materials involved. These include solar collector assemblies, precision tracking systems, heat transfer fluids, thermal energy storage systems, and steam turbine generators. Moreover, the cost of land acquisition in high solar irradiance regions, site preparation, and interconnection with existing grid infrastructure further elevates initial expenses.

The financial viability of parabolic trough projects is often hindered by long payback periods, which can exceed 15 to 20 years depending on the scale of the project and local energy tariffs. Unlike photovoltaic solar power plants, which benefit from rapidly declining costs and modular installation, concentrated solar power projects have not experienced the same rate of cost reduction. This disparity makes them less attractive to investors, particularly in emerging markets where access to long-term financing at competitive rates remains limited.

Additionally, the complexity and duration of project execution increase the risk profile for investors. Delays due to permitting, environmental assessments, or supply chain disruptions can significantly impact project timelines and financial projections. This is particularly challenging in countries where regulatory frameworks for renewable energy are still evolving or inconsistent. Furthermore, the lack of standardized financing models and limited availability of insurance products tailored to concentrated solar power technologies compound the challenge.

While multilateral development banks and government-backed energy programs offer some financial support, private sector participation remains cautious. To overcome this obstacle, the market requires targeted policy interventions such as investment guarantees, production-based incentives, and concessional financing mechanisms. Without such support, the parabolic trough segment may continue to face challenges in achieving the scale necessary to compete with other renewable energy technologies on cost and bankability.

Key Market Trends

Integration of Thermal Energy Storage for Enhanced Dispatchability

One of the most influential trends in the Parabolic Trough Concentrated Solar Power Market is the integration of advanced thermal energy storage systems to enable reliable, dispatchable power supply. Parabolic trough systems are increasingly being paired with molten salt or synthetic oil-based thermal storage units that allow heat collected during peak sunlight hours to be stored and used to generate electricity even after sunset or during cloudy conditions. This development addresses one of the fundamental limitations of solar power - intermittency - and positions parabolic trough technology as a valuable contributor to baseload renewable electricity supply.

Thermal storage integration not only improves grid reliability but also enhances the overall economic viability of concentrated solar power projects by increasing the capacity factor and enabling operators to participate in peak-hour electricity markets where pricing is more favorable. As governments and utilities prioritize renewable energy sources that can ensure stability in the grid, dispatchable solar power has become increasingly attractive. This trend is further fueled by technological improvements in storage tank design, heat exchanger efficiency, and fluid stability, which reduce energy loss and maintenance costs.

Countries such as the United Arab Emirates, Morocco, and Spain have already deployed large-scale parabolic trough plants with storage capabilities, and several others in regions like South America, India, and North Africa are following suit. The long-duration storage capability also offers synergies with industrial process heating and hybrid systems. Moving forward, this trend will shape investment decisions and design standards in the parabolic trough segment, solidifying its role in next-generation clean energy strategies.

Key Market Players

  • Abengoa Solar
  • ACWA Power
  • SENER Group
  • BrightSource Energy
  • Siemens Energy
  • Tsk Flagsol Engineering
  • Aalborg CSP
  • ENGIE
  • GE Renewable Energy
  • GlassPoint Solar

Report Scope:

In this report, the Global Parabolic Trough Concentrated Solar Power(CSP) Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Parabolic Trough Concentrated Solar Power(CSP) Market, By Component:

  • Solar Field
  • Power Block
  • Thermal Energy Storage System
  • Heat Transfer Fluid System
  • Control Systems

Parabolic Trough Concentrated Solar Power(CSP) Market, By Technology:

  • Single-Axis Tracking
  • Dual-Axis Tracking

Parabolic Trough Concentrated Solar Power(CSP) Market, By Application:

  • Electricity Generation
  • Process Heating
  • Enhanced Oil Recovery
  • Desalination

Parabolic Trough Concentrated Solar Power(CSP) Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Asia-Pacific
  • China
  • India
  • Japan
  • South Korea
  • Australia
  • Middle East & Africa
  • Saudi Arabia
  • UAE
  • South Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Parabolic Trough Concentrated Solar Power(CSP) Market.

Available Customizations:

With the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report.

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, and Trends
4. Voice of Customer
5. Global Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Component (Solar Field, Power Block, Thermal Energy Storage System, Heat Transfer Fluid System, Control Systems)
5.2.2. By Technology (Single-Axis Tracking, Dual-Axis Tracking)
5.2.3. By Application (Electricity Generation, Process Heating, Enhanced Oil Recovery, Desalination)
5.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
5.3. By Company (2024)
5.4. Market Map
6. North America Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Component
6.2.2. By Technology
6.2.3. By Application
6.2.4. By Country
6.3. North America: Country Analysis
6.3.1. United States Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Component
6.3.1.2.2. By Technology
6.3.1.2.3. By Application
6.3.2. Canada Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Component
6.3.2.2.2. By Technology
6.3.2.2.3. By Application
6.3.3. Mexico Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Component
6.3.3.2.2. By Technology
6.3.3.2.3. By Application
7. Europe Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Component
7.2.2. By Technology
7.2.3. By Application
7.2.4. By Country
7.3. Europe: Country Analysis
7.3.1. Germany Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Component
7.3.1.2.2. By Technology
7.3.1.2.3. By Application
7.3.2. France Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Component
7.3.2.2.2. By Technology
7.3.2.2.3. By Application
7.3.3. United Kingdom Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Component
7.3.3.2.2. By Technology
7.3.3.2.3. By Application
7.3.4. Italy Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Component
7.3.4.2.2. By Technology
7.3.4.2.3. By Application
7.3.5. Spain Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Component
7.3.5.2.2. By Technology
7.3.5.2.3. By Application
8. Asia Pacific Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Component
8.2.2. By Technology
8.2.3. By Application
8.2.4. By Country
8.3. Asia Pacific: Country Analysis
8.3.1. China Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Component
8.3.1.2.2. By Technology
8.3.1.2.3. By Application
8.3.2. India Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Component
8.3.2.2.2. By Technology
8.3.2.2.3. By Application
8.3.3. Japan Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Component
8.3.3.2.2. By Technology
8.3.3.2.3. By Application
8.3.4. South Korea Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Component
8.3.4.2.2. By Technology
8.3.4.2.3. By Application
8.3.5. Australia Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Component
8.3.5.2.2. By Technology
8.3.5.2.3. By Application
9. Middle East & Africa Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Component
9.2.2. By Technology
9.2.3. By Application
9.2.4. By Country
9.3. Middle East & Africa: Country Analysis
9.3.1. Saudi Arabia Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Component
9.3.1.2.2. By Technology
9.3.1.2.3. By Application
9.3.2. UAE Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Component
9.3.2.2.2. By Technology
9.3.2.2.3. By Application
9.3.3. South Africa Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Component
9.3.3.2.2. By Technology
9.3.3.2.3. By Application
10. South America Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Component
10.2.2. By Technology
10.2.3. By Application
10.2.4. By Country
10.3. South America: Country Analysis
10.3.1. Brazil Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Component
10.3.1.2.2. By Technology
10.3.1.2.3. By Application
10.3.2. Colombia Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Component
10.3.2.2.2. By Technology
10.3.2.2.3. By Application
10.3.3. Argentina Parabolic Trough Concentrated Solar Power(CSP) Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Component
10.3.3.2.2. By Technology
10.3.3.2.3. By Application
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends and Developments
12.1. Merger & Acquisition (If Any)
12.2. Product Launches (If Any)
12.3. Recent Developments
13. Company Profiles
13.1. Abengoa Solar
13.1.1. Business Overview
13.1.2. Key Revenue and Financials
13.1.3. Recent Developments
13.1.4. Key Personnel
13.1.5. Key Product/Services Offered
13.2. ACWA Power
13.3. SENER Group
13.4. BrightSource Energy
13.5. Siemens Energy
13.6. Tsk Flagsol Engineering
13.7. Aalborg CSP
13.8. ENGIE
13.9. GE Renewable Energy
13.10. GlassPoint Solar
14. Strategic Recommendations15. About the Publisher & Disclaimer

Companies Mentioned

  • Abengoa Solar
  • ACWA Power
  • SENER Group
  • BrightSource Energy
  • Siemens Energy
  • Tsk Flagsol Engineering
  • Aalborg CSP
  • ENGIE
  • GE Renewable Energy
  • GlassPoint Solar

Table Information