+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Computational Materials Science

  • ID: 2690406
  • Book
  • October 2018
  • 388 Pages
  • Elsevier Science and Technology

Computational Materials Science provides the theoretical basis necessary for understanding atomic surface phenomena and processes of phase transitions, especially crystallization, is given. The most important information concerning computer simulation by different methods and simulation techniques for modeling of physical systems is also presented. A number of results are discussed regarding modern studies of surface processes during crystallization. There is sufficiently full information on experiments, theory, and simulations concerning the surface roughening transition, kinetic roughening, nucleation kinetics, stability of crystal shapes, thin film formation, imperfect structure of small crystals, size dependent growth velocity, distribution coefficient at growth from alloy melts, superstructure ordering in the intermetallic compound.

Computational experiments described in the last chapter allow visualization of the course of many processes and better understanding of many key problems in Materials Science. There is a set of practical steps concerning computational procedures presented. Open access to executable files in the book make it possible for everyone to understand better phenomena and processes described in the book.

  • Valuable reference book, but also helpful as a supplement to courses
  • Computer programs available to supplement examples
  • Presents several new methods of computational materials science and clearly summarizes previous methods and results
Note: Product cover images may vary from those shown

1. Computer Modeling of Physical Phenomena and Processes 2. Basic concepts of Theory of Phase Transformations 3. Diffusion Problems of Crystal Growth: Methods of Numerical Solutions 4. Structure of the Boundary Surfaces 5. Adsorption. The Gibbs Adsorption Equation 6. Simulation Techniques for Atomic Systems 7. The Surface Processes During Crystallization 8. Modern Simulations by the Molecular Dynamics Method 9. Computational Experiments in Materials Science (Demonstrative Programs Handling)

Note: Product cover images may vary from those shown
Ovrutsky, A.M.
Prokhoda, A. S
Rasshchupkyna, M.S.
Note: Product cover images may vary from those shown