A Contemporary Study of Iterative Methods

  • ID: 4398522
  • Book
  • 400 Pages
  • Elsevier Science and Technology
1 of 4

A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications evaluates and compares advances in iterative techniques, also discussing their numerous applications in applied mathematics, engineering, mathematical economics, mathematical biology and other applied sciences. It uses the popular iteration technique in generating the approximate solutions of complex nonlinear equations that is suitable for aiding in the solution of advanced problems in engineering, mathematical economics, mathematical biology and other applied sciences. Iteration methods are also applied for solving optimization problems. In such cases, the iteration sequences converge to an optimal solution of the problem at hand.

  • Contains recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces
  • Encompasses the novel tool of dynamic analysis for iterative methods, including new developments in Smale stability theory and polynomiography
  • Explores the uses of computation of iterative methods across non-linear analysis
  • Uniquely places discussion of derivative-free methods in context of other discoveries, aiding comparison and contrast between options

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Note: Product cover images may vary from those shown
2 of 4
  1. The majorization method in the Kantorovich theory
  2. Directional Newton methods
  3. Newton's method
  4. Generalized equations
  5. Gauss-Newton method
  6. Gauss-Newton method for convex optimization
  7. Proximal Gauss-Newton method
  8. Multistep modified Newton-Hermitian and Skew-Hermitian Splitting method
  9. Secant-like methods in chemistry
  10. Robust convergence of Newton's method for cone inclusion problem
  11. Gauss-Newton method for convex composite optimization
  12. Domain of parameters
  13. Newton's method for solving optimal shape design problems
  14. Osada method
  15. Newton's method to solve equations with solutions of multiplicity greater than one
  16. Laguerre-like method for multiple zeros
  17. Traub's method for multiple roots
  18. Shadowing lemma for operators with chaotic behavior
  19. Inexact two-point Newton-like methods
  20. Two-step Newton methods
  21. Introduction to complex dynamics
  22. Convergence and the dynamics of Chebyshev-Halley type methods
  23. Convergence planes of iterative methods
  24. Convergence and dynamics of a higher order family of iterative methods
  25. Convergence and dynamics of iterative methods for multiple zeros
Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
Magrenan, A. Alberto
Professor Alberto Magreñán (Department of Mathematics, Universidad Internacional de La Rioja, Spain). Magreñán has published 43 documents. He works in operator theory, computational mathematics, Iterative methods, dynamical study and computation.
Argyros, Ioannis
Professor Ioannis Argyros (Department of Mathematical Sciences Cameron University, Lawton, OK, USA) has published 329 indexed documents and 25 books. Argyros is interested in theories of inequalities, operators, computational mathematics and iterative methods, and banach spaces.
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll