+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Computational Techniques for Multiphase Flows. Edition No. 2

  • ID: 4621976
  • Book
  • February 2019
  • Region: Global
  • 640 Pages
  • Elsevier Science and Technology
1 of 3

Computational Techniques for Multiphase Flows, Second Edition, provides the latest research and theories covering the most popular multiphase flows The book begins with an overview of the state-of-the-art techniques for multiple numerical methods in handling multiphase flow, compares them, and finally highlights their strengths and weaknesses. In addition, it covers more straightforward, conventional theories and governing equations in early chapters, moving on to the more modern and complex computational models and tools later in the book. It is therefore accessible to those who may be new to the subject while also featuring topics of interest to the more experienced researcher.

Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for understanding fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, automotive, energy, aerospace and pharmaceutical industries. This revised edition is an ideal reference for scientists, MSc students and chemical and mechanical engineers in these areas.

  • Includes updated chapters in addition to a brand-new section on granular flows.
  • Features novel solution methods for multiphase flow, along with recent case studies.
  • Explains how and when to use the featured technique and how to interpret the results and apply them to improving applications.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Note: Product cover images may vary from those shown
2 of 3

1. Introduction 2. Governing Equations and Boundary Conditions 3. Solution Methods for Multiphase Flows 4. Gas-Particle and Liquid-Particles Flows 5. Gas-Liquid Flows 6. Free Surface Flows 7. Granular Flows 8. Freezing/Solidification 9. Three-Phase Flows 10. Future Trends in Handling Turbulent Multiphase Flows

Note: Product cover images may vary from those shown
3 of 3


4 of 3
Yeoh, Guan Heng
Guan Heng Yeoh is a professor at the School of Mechanical and Manufacturing Engineering, UNSW, and a principal research scientist at ANSTO. He is the founder and editor of the Journal of Computational Multiphase Flows and the group leader of Computational Thermal-Hydraulics of OPAL Research Reactor, ANSTO. He has approximately 250 publications including 10 books, 12 book chapters, 156 journal articles and 115 conference papers with an H-index of 33 and over 4490 citations. His research interests are computational fluid dynamics (CFD); numerical heat and mass transfer; turbulence modelling using Reynolds averaging and large eddy simulation; combustion, radiation heat transfer, soot formation and oxidation, and solid pyrolysis in fire engineering; fundamental studies in multiphase flows: free surface, gas-particle, liquid-solid (blood flow and nanoparticles), and gas-liquid (bubbly, slug/cap, churn-turbulent, and subcooled nucleate boiling flows); computational modelling of industrial systems of single-phase and multiphase flows.
Tu, Jiyuan
Jiyuan Tu has 33 years of academic and industry experience in this field. He has authored 9 books, is an editor on 6 journals, has over 300 journal articles published and is in service of expert committee members to the United Nations (UN) and International Atomic Energy Agency (IAEA). In the last 10 years, he has won 6 awards for excellence in research and teaching. His areas of research and consulting expertise are: Computational fluid dynamics (CFD) and numerical heat transfer (NHT); computational and experimental modelling of multiphase flows; fluid-structure interaction; biomedical engineering: optimal design of drug delivery devices; prediction of aerosol deposition in human airways and nasal cavity; and simulation of blood flow in arteries.
Note: Product cover images may vary from those shown