+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


The Model Legume Medicago truncatula. Edition No. 1

  • ID: 5227582
  • Book
  • January 2020
  • 1264 Pages
  • John Wiley and Sons Ltd

Fully covers the biology, biochemistry, genetics, and genomics of Medicago truncatula

Model plant species are valuable not only because they lead to discoveries in basic biology, but also because they provide resources that facilitate translational biology to improve crops of economic importance. Plant scientists are drawn to models because of their ease of manipulation, simple genome organization, rapid life cycles, and the availability of multiple genetic and genomic tools. This reference provides comprehensive coverage of the Model Legume Medicago truncatula. It features review chapters as well as research chapters describing experiments carried out by the authors with clear materials and methods. Most of the chapters utilize advanced molecular techniques and biochemical analyses to approach a variety of aspects of the Model.

The Model Legume Medicago truncatula starts with an examination of M. truncatula plant development; biosynthesis of natural products; stress and M. truncatula; and the M. truncatula-Sinorhizobium meliloti symbiosis. Symbiosis of Medicago truncatula with arbuscular mycorrhiza comes next, followed by chapters on the common symbiotic signaling pathway (CSSP or SYM) and infection events in the Rhizobium-legume symbiosis. Other sections look at hormones and the rhizobial and mycorrhizal symbioses; autoregulation of nodule numbers (AON) in M. truncatula; Medicago truncatula databases and computer programs; and more.

  • Contains reviews, original research chapters, and methods
  • Covers most aspects of the M. truncatula Model System, including basic biology, biochemistry, genetics, and genomics of this system
  • Offers molecular techniques and advanced biochemical analyses for approaching a variety of aspects of the Model Legume Medicago truncatula
  • Includes introductions by the editor to each section, presenting the summary of selected chapters in the section
  • Features an extensive index, to facilitate the search for key terms

The Model Legume Medicago truncatula is an excellent book for researchers and upper level graduate students in microbial ecology, environmental microbiology, plant genetics and biochemistry. It will also benefit legume biologists, plant molecular biologists, agrobiologists, plant breeders, bioinformaticians, and evolutionary biologists.

Note: Product cover images may vary from those shown

Volume I

Preface xv

Acknowledgments xvi

List of contributors xvii

Section 1

1.1 General introduction 3
Frans J. de Bruijn

Section 2: Overview chapters 7

2.1 A snapshot of functional genetic studies in Medicago truncatula 9
Yun Kang, Minguye Li, Senjuti Sinharoy, and Jerome Verdier

2.2 Medicago truncatula as an ecological evolutionary and forage legume model: new directions forward 31
Eric J.B. von Wettberg, Jayanti Muhkerjee, Ken Moriuchi, and Stephanie S. Porter

Section 3: Medicago truncatula plant development 41

3.1 Seed development: introduction 43
Frans J. de Bruijn

3.1.1 A physiological perspective of late maturation processes and establishment of seed quality in Medicago truncatula seeds 44
Jerome Verdier, Olivier Leprince, and Julia Buitink

3.1.2 Medicago truncatula an informative model to investigate the DNA damage response during seed germination 55
Anca Macovei, Andrea Pagano, Chiara Forti, Susana Araújo, and Alma Balestrazzi

3.1.3 Transcriptional networks in early Medicago truncatula embryo development 61
Ray J. Rose

3.1.4 Embryo development and the oil and protein bodies in Medicago truncatula 71
Youhong Song, Xin-Ding Wang, Nathan Smith, Simon Wheeler, and Ray J. Rose

3.1.5 Role of thioredoxins and NADP-thioredoxin reductases in legume seeds and seedlings 80
Françoise Montrichard, Pierre Frendo, Pascal Rey, and Bob Buchanan

3.1.6 Seed shape quantification in the model legumes: methods and applications 92
Emilio Cervantes, Ezzeddine Saadaoui, Ángel Tocino, and José Javier Martín Gómez

3.1.7 The underlying processes governing seed size plasticity: impact of endoploidy on seed coat development and cell expansion in Medicago truncatula 99
S. Ochatt and M. Abirached-Darmency

3.2 Root development: introduction 117
Frans J. de Bruijn

3.2.1 Nitrate signaling pathway via the transporter MtNPF6.8 involves abscisic acid for the regulation of primary root elongation in Medicago truncatula 118
Anis M. Limami and Marie-Christine Morère Le Paven

3.2.2 SCARECROW and SHORT-ROOT show an overlapping expression pattern in the Medicago truncatula nodule central meristem 125
Henk J. Franssen, Olga Kulikova, Xi Wan, Auke Adams, and Renze Heidstra

3.2.3 Lateral root formation and patterning in Medicago truncatula 130
Sandra Bensmihen

3.2.4 Modulation of root elongation by abscisic acid and LATERAL ROOT ORGAN DEFECTIVE/NUMEROUS INFECTIONS AND POLYPHENOLICS via reactive oxygen species in Medicago truncatula 136
Jeanne M. Harris and Chang Zhang

3.2.5 FYVE and PH protein domains present in MtZR1 a PRAF protein modulate the development of roots and symbiotic root nodules of Medicago truncatula via potential phospholipids signaling 144
Julie Hopkins, Olivier Pierre, Pierre Frendo, and Eric Boncompagni

3.3 Leaf development: introduction 153
Frans J. de Bruijn

3.3.1 Compound leaf development in Medicago truncatula 154
Rujin Chen

3.3.2 Mechanistic insights into STENOFOLIA mediated leaf blade outgrowth in Medicago truncatula 173
Fei Zhang, Hui Wang, and Million Tadege

3.4 Flower development: introduction 181
Frans J. de Bruijn

3.4.1 Genetic control of flowering time in legumes 182
James L. Weller, Richard C. Macknight

3.4.2 Forward and reverse screens to identify genes that control vernalization and flowering time in Medicago truncatula 189
Mauren Jaudal, Geoffrey Thomson, Lulu Zhang, Chong Che, Jiangqi Wen, Kirankumar S. Mysore, Million Tadege, and Joanna Putterill

3.4.3 MtNAM regulates floral organ identity and lateral organ separation in Medicago truncatula 197
Xiaofei Cheng, Jianling Peng, Rujin Chen, Kirankumar S. Mysore, and Jiangqi Wen

Section 4: Biosynthesis of natural products: introduction 207

4.1 Organization and regulation of triterpene saponin biosynthesis in Medicago truncatula 209
Jan Mertens and Alain Goossens

4.2 Saponins in Medicago truncatula: structures and activities 220
Catherine Sivignon, Isabelle Rahioui, and Pedro da Silva

4.3 Saponin synthesis in Medicago truncatula plants: CYP450-mediated formation of sapogenins in the different plant organs 225
Maria Carelli, Massimo Confalonieri, Aldo Tava, Elisa Biazzi, Ornella Calderini, Pamela Abbruscato, Maria Cammareri, and Carla Scotti

Section 5: Stress and Medicago truncatula 237

5.1 Abiotic stress: introduction 239
Frans J. de Bruijn

5.1.1 Genomic and transcriptomic basis of salinity adaptation and transgenerational plasticity in Medicago truncatula 240
Maren L. Friesen

5.1.2 Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula 243
Ruicai Long, Fan Zhang, Tiejun Zhang, Junmei Kang, and Qingchuan Yang

5.1.3 Rhizobial symbiosis influences response to early salt and drought stress of the Medicago truncatula root proteome 253
Reinhard Turetschek, Christiana Staudinger, and StefanieWienkoop

5.1.4 Deciphering the role of the alternative respiration under salt stress in Medicago truncatula 261
Nestor F Del-Saz, Francisco Palma, Jose Antonio Herrera-Cervera, and Miquel Ribas-Carbo

5.1.5 Effect of arsenic on legumes: analysis in the model Medicago truncatula–Ensifer interaction 268
Eloísa Pajuelo, Ignacio D. Rodríguez-Llorente, and Miguel A. Caviedes

5.1.6 Dual oxidative stress control involving antioxidant defense system and alternative oxidase pathways within the model legume Medicago truncatula under biotic and abiotic constraints 281
Haythem Mhadhbi

Section 5.2: Biotic stress: interaction of Medicago truncatula with pathogens and pests 289

5.2.1 Interaction with root and foliar pathogens: introduction 291
Frans J. de Bruijn Medicago truncatula and other annual Medicago spp. – interactions with root and foliar fungal oomycete and viral pathogens 293
Martin J. Barbetti, Ming Pei You, and Roger A.C. Jones Deciphering resistance mechanisms to the root rot disease of legumes caused by Aphanomyces euteiches with Medicago truncatula genetic and genomic resources 307
Christophe Jacquet and Maxime Bonhomme Medicago truncatula as a model organism to study conserved and contrasting aspects of symbiotic and pathogenic signaling pathways 317
Aleksandr Gavrin and Sebastian Schornack Tools and strategies for genetic and molecular dissection of Medicago truncatula resistance against Fusarium wilt disease 331
Louise F. Thatcher, Brendan N. Kidd, and Karam B. Singh Medicago truncatula as a model host for genetic and molecular dissection of resistance to Rhizoctonia solani 340
Jonathan P. Anderson, Brendan N. Kidd, and Karam B. Singh Phosphorus control of plant interactions with mutualistic and pathogenic microorganisms: a mini-review and a case study of the Medicago truncatula B9 mutant 346
Elise Thalineau, Carine Fournier, Sylvain Jeandroz, and Hoai-Nam Truong The Medicago truncatula–Ralstonia solanacearum pathosystem opens up many research perspectives 355
Fabienne Vailleau

5.2.2 Aphid stress: introduction 362
Frans J. de Bruijn Medicago truncatula–aphid interactions 363
Lars G. Kamphuis, Ling-Ling Gao, Colin G.N. Turnbull, and Karam B. Singh Medicago truncatula–pea aphid interaction in the context of global climate change 369
Yucheng Sun, Huijuan Guo, and Feng Ge

5.2.3 Interactions with other pathogens and parasites: introduction 377
Frans J. de Bruijn Characterization of defense mechanisms to parasitic plants in the model Medicago truncatula 378
M. Ángeles Castillejo, Mónica Fernández-Aparicio, and Diego Rubiales Medicago truncatula host/nonhost legume rust interactions 384
Maria Carlota Vaz Patto and Diego Rubiales Medicago truncatula as a model to study powdery mildew resistance 390
Nicolas Rispail, Elena Prats, and Diego Rubiales Antifungal defensins from Medicago truncatula: structure–activity relationships modes of action and biotech applications 398
Siva L.S. Velivelli, Kazi T. Islam, and Dilip M. Shah Leaf me alone: Medicago truncatula defenses against foliar lepidopteran herbivores 409
Jacqueline C. Bede

Section 6: The Medicago truncatula–Sinorhizobium meliloti symbiosis 429

6.1 Symbiotic nitrogen fixation: introduction 431
Frans J. de Bruijn

6.2 Signaling and early infection events in the rhizobium–legume symbiosis: introduction 432
Frans J. de Bruijn

6.2.1 The role of the flavonoid pathway in Medicago truncatula in root nodule formation. A review 434
Ulrike Mathesius

6.2.2 Expression and function of the Medicago truncatula lysin motif receptor-like kinase (LysM-RLK) gene family in the legume–rhizobia symbiosis 439
Jean-Jacques Bono, Judith Fliegmann, Clare Gough, and Julie Cullimore

6.2.3 Nod factor hydrolysis in Medicago truncatula: signal inactivation or formation of secondary signals? 448
Jie Cai, Ru-Jie Li, Yi-Han Wang, Zhi-Ping Xie, and Christian Staehelin

6.2.4 The Medicago truncatula E3 ubiquitin ligase PUB1 negatively regulates rhizobial and arbuscular mycorrhizal symbioses through its ubiquitination activity 453
Tatiana Vernié, Malick Mbengue, and Christine Hervé

6.2.5 Encoding nuclear calcium oscillations in root symbioses 461
Aisling Cooke and Myriam Charpentier

Section 7: Symbiosis of Medicago truncatula with arbuscular mycorrhiza 467

7.1 Signaling and infection events in the arbuscular mycorrhiza–Medicago truncatula symbiosis: introduction 469
Frans J. de Bruijn

7.1.1 The symbiosis of Medicago truncatula with arbuscular mycorrhizal fungi 471
Nazli Merve Dursun, Eva Nouri, and Didier Reinhardt

7.1.2 Role of phytohormones in arbuscular mycorrhiza development 485
Debatosh Das and Caroline Gutjahr

7.1.3 Laser microdissection of arbuscular mycorrhiza 501
Erik Limpens

7.1.4 Truncated arbuscules formed in the Medicago truncatula mutant MtHA1 maintain mycorrhiza-induced resistance 513
Haoqiang Zhang and Philipp Franken

Section 8: The common symbiotic signaling pathway (CSSP or SYM) 521

8.1 The common symbiotic signaling pathway 523
Frédéric Debellé

8.2 Contribution of model legumes to knowledge of actinorhizal symbiosis 529
Didier Bogusz and Claudine Franche

8.3 DELLA proteins are common components of the symbiotic rhizobial and mycorrhizal signaling pathways 537
Qiujin Xie and Ertao Wang

Volume II

Preface xv

Acknowledgments xvi

List of contributors xvii

Section 9: Infection events in the Rhizobium–legume symbiosis 543

9.1 Genes induced during the rhizobial infection process: introduction 545
Frans J. de Bruijn

9.1.1 Comparative analysis of tubulin cytoskeleton rearrangements in nodules of Medicago truncatula and Pisum sativum 547
Viktor E. Tsyganov, Anna B. Kitaeva, and Kirill N. Demchenko

9.1.2 Post-transcriptional reprogramming during root nodule symbiosis 554
Mauricio Alberto Reynoso, Soledad Traubenik, Karen Hobecker, Flavio Blanco, and María Eugenia Zanetti

9.1.3 MtKNOX3 – a possible regulator of cytokinin pathway during nodule development in Medicago truncatula 563
M. Azarakhsh, Maria A. Lebedeva, and L.A. Lutova

9.1.4 Features of Sinorhizobium meliloti exopolysaccharide succinoglycan required for successful invasion of Medicago truncatula nodules 571
Kathryn M. Jones

9.1.5 Infection thread development in model legumes 579
Daniel J. Gage

9.2 Rhizobial release symbiosomes and bacteroid formation: introduction 589
Frans J. de Bruijn

9.2.1 The Defective in Nitrogen Fixation genes of Medicago truncatula reveal key features in the intracellular association with rhizobia 591
Xiaoyi Wu and Dong Wang

9.2.2 Terminal bacteroid differentiation in the Medicago–Rhizobium interaction – a tug of war between plant and bacteria 600
Andreas F. Haag and Peter Mergaert

9.2.3 More than antimicrobial: nodule cysteine-rich peptides maintain a working balance between legume plant hosts and rhizobia bacteria during nitrogen-fixing symbiosis 617
Huairong Pan

9.2.4 Functional dissection of Medicago truncatula NODULES WITH ACTIVATED DEFENSE 1 in maintenance of rhizobial endosymbiosis 627
Haixiang Yu, Chao Wang, Liuyang Cai, Bei Huang, and Zhongming Zhang

9.2.5 Which role for Medicago truncatula non-specific lipid transfer proteins in rhizobial infection? 637
Chiara Santi, Barbara Molesini, and Tiziana Pandolfini

9.2.6 Syntaxin MtSYP132 defines symbiotic membranes in Medicago truncatula root nodules 645
Madhavi Avadhani, Christina M. Catalano, and D. Janine Sherrier

9.3 Nodule and bacteroid functioning: introduction 650
Frans J. de Bruijn

9.3.1 Metal transport in Medicago truncatula nodule rhizobia-infected cells 652
Isidro Abreu, Viviana Escudero, Jesús Montiel, Rosario Castro-Rodríguez, and Manuel González-Guerrero

9.3.2 Inhibition of glutamine synthetase leads to a fast transcriptional activation of defense responses in root nodules 665
Ana Rita Seabra and Helena Carvalho

9.3.3 Complex dynamics and synchronization of N-feedback and C alteration in the nodules of Medicago truncatula under abundant N or sub-optimal P supply 674
Saad Sulieman

9.4 Bacteroid senescence: introduction 681
Frans J. de Bruijn

9.4.1 Involvement of proteases during nodule senescence in leguminous plants 683
Li Yang, Camille Syska, Isabelle Garcia, Pierre Frendo, and Eric Boncompagni

9.4.2 Senescence of Medicago truncatula root nodules: NO balance 694
Pauline Blanquet, Claude Bruand, and Eliane Meilhoc

9.4.3 Medicago truncatula ESN1 a key regulator of nodule senescence and symbiotic nitrogen fixation 701
Yuhui Chen, Jiejun Xi, and Rujin Chen

9.5 Structure of indeterminate Medicago truncatula nodules: introduction 706
Frans J. de Bruijn

9.5.1 Development and structures of the meristems of roots and indeterminate nodules: introduction 708
Frans J. de Bruijn Organization and ultrastructure of Medicago truncatula root apical meristem 709
Monika Skawińska, Izabela Sańko-Sawczenko, Dominika Dmitruk,Weronika Czarnocka, and Barbara Łotocka Organization and ultrastructure of Medicago truncatula root nodule meristem 726
Monika Skawińska, Izabela Sańko-Sawczenko, Weronika Czarnocka, and Barbara Łotocka

Section 10: Hormones and the rhizobial and mycorrhizal symbioses 741

10.1 Phytohormone regulation of Medicago truncatula–rhizobia interactions. A review 743
Ulrike Mathesius

10.2 Plant hormones play common and divergent roles in nodulation and arbuscular mycorrhizal symbioses 753
Eloise Foo

10.3 Auxins and other phytohormones as signals in arbuscular mycorrhiza formation 766
Jutta Ludwig-Muller

10.4 Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at the whole genome level 777
Lei Chen, Tianzuo Wang, Mingui Zhao, and Wen-Hao Zhang

10.5 Hormone-induced nodule-like structures in land plants: an update 785
Jacklyn Thomas and Arijit Mukherjee

10.6 Structural studies of Medicago truncatula proteins participating in cytokinin signal transduction and nodulation 794
Milosz Ruszkowski

10.7 Identifying auxin response factor genes and their co-expression networks in Medicago truncatula 802
David J. Burks and Rajeev K. Azad

Section 11: Autoregulation of nodule numbers (AON) in Medicago truncatula 809

11.1 The autoregulation gene SUNN mediates changes in nodule and lateral root formation in response to nitrogen through changes of shoot-to-root auxin transport 811
Ulrike Mathesius, Giel E. van Noorden, and Jian Jin

Section 12: Genetics and genomics of Medicago truncatula 817

12.1 Genetic map of Medicago truncatula 819
Frans J. de Bruijn

12.2 The genome sequence of Medicago truncatula: introduction 821
Frans J. de Bruijn

12.2.1 An improved genome release (Version Mt4.0) for the model legume Medicago truncatula 822
Christopher D. Town

12.2.2 The sequenced genomes of Medicago truncatula 828
Nevin D. Young, and Peng Zhou

12.3 Quantitative trait loci mapping: introduction 835
Frans J. de Bruijn

12.3.1 QTL analyses of seed germination and seedling pre-emergence growth under abiotic stresses in Medicago truncatula 837
Beatrice Teulat

12.3.2 Unraveling the determinants of freezing tolerance in Medicago truncatula: a first step toward improving the response of crop legumes to freezing stress using translational genomics 849
Nadim Tayeh, Komlan Avia, Isabelle Lejeune-Hénaut, and Bruno Delbreil

12.4 Genome-wide association and Medicago truncatula: introduction 862
Frans J. de Bruijn

12.4.1 Multi-locus GWAS and genome-wide composite interval mapping (GCIM) 863
Yuan-Ming Zhang

12.4.2 Genome-wide association mapping and population genomic features in Medicago truncatula 870
Maxime Bonhomme and Christophe Jacquet

12.4.3 The use of CRISPR/Cas9 as a reverse genetics tool to validate genome-wide association candidates 882
Shaun J. Curtin, Peter Tiffin, and Nevin D. Young

12.5 Transposons gene instability and gene tagging: introduction 887
Frans J. de Bruijn

12.5.1 Class II transposable elements in Medicago truncatula 888
Dariusz Grzebelus

12.6 Medicago truncatula and evolution: introduction 893
Frans J. de Bruijn

12.6.1 Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the Papilionoideae 895
Li Zhang, Qigang Li, Jim M. Dunwell, and Yuan-Ming Zhang

12.6.2 Patterns of polymorphism recombination and selection in Medicago truncatula 903
Timothy Paape

12.6.3 Genome-wide determination of poly(A) sites in Medicago truncatula: evolutionary conservation of alternative poly(A) site choice 911
Xiaohui Wu, Arthur G. Hunt, and Qingshun Q. Li

12.7 The Medicago truncatula genome and translational genomics: introduction 921
Frans J. de Bruijn

12.7.1 GBS-based genome-wide association and genomic selection for alfalfa (Medicago sativa) forage quality improvement 923
Elisa Biazzi, Nelson Nazzicari, Luciano Pecetti, and Paolo Annicchiarico

12.8 Genomic and genetic markers in Medicago truncatula: introduction 928
Frans J. de Bruijn

12.8.1 Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the Medicago truncatula genome 930
Zan Wang

12.8.2 Genome-wide development of microRNA-based SSR markers in Medicago truncatula with their transferability analysis and utilization in related legume species 936
Wenxian Liu, Xueyang Min, and Yanrong Wang

12.9 Small RNAs in Medicago truncatula: introduction 946
Frans J. de Bruijn

12.9.1 Small RNA diversity and roles in model legumes 948
Hélène Proust, Jérémy Moreau, Martin Crespi, Caroline Hartmann, and Christine Lelandais-Brière

12.9.2 Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula 963
Ruicai Long, Mingna Li, Junmei Kang, Tiejun Zhang, Yan Sun, and Qingchuan Yang

12.9.3 MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula 975
Emanuel A. Devers

12.9.4 MicroRNA-based biotechnology for Medicago improvement 987
Baohong Zhang and Turgay Unver

12.9.5 Expression and regulation of small RNAs in the plant–microorganism symbioses in Medicago truncatula 991
Danfeng Jin, Xianwen Meng, Yue Wang, Jingjing Wang, Yuhua Zhao, and Ming Chen

12.10 Mutagenesis forward and reverse genetics in Medicago truncatula: introduction 1003
Frans J. de Bruijn

12.10.1 Isolation and characterization of non-transposon symbiotic nitrogen fixing mutants of Medicago truncatula 1006
Gyöngyi Zs. Kováts, Lili Fodor, Beatrix Horváth, Ágota Domonkos, Gergely Iski, Yuhui Chen, Rujin Chen, and Péter Kaló

12.10.2 Targeted mutagenesis by an optimized agrobacterium-delivered CRISPR/Cas9 system in the model legume Medicago truncatula 1015
Yingying Meng, ChongnanWang, Pengcheng Yin, Butuo Zhu, Pengcheng Zhang, Lifang Niu, and Hao Lin

12.10.3 Whole genome sequencing of symbiotic nitrogen fixation mutants from the Medicago truncatula Tnt1 mutant population to identify relevant Tnt1 and MERE1 insertion sites 1019
Vijaykumar Veerappan, Taylor Troiani, and Rebecca Dickstein

12.10.4 A simple method for genetic crossing in Medicago truncatula 1027
Marc Bosseno, Annie Lambert, Daniel Beucher, Marie Le Gleuher, Catherine Aubry, Nicolas Pauly, Françoise Montrichard, and Alexandre Boscari

12.10.5 An artificial-microRNA system based on an endogenous microRNA of Medicago truncatula to unravel the function of root endosymbiosis related genes 1033
Emanuel A. Devers

12.11 Transcriptomics in Medicago truncatula: introduction 1043
Frans J. de Bruijn

12.11.1 Synergism and symbioses: unpacking complex mutualistic species interactions using transcriptomic approaches 1045
Damian Hernandez, Kasey N. Kiesewetter, Sathvik Palakurty, John R. Stinchcombe, and Michelle E. Afkhami

12.11.2 Comparative genomic and transcriptomic analyses of legume genes controlling the nodulation process 1055
Lise Pingault, Zhenzhen Qiao, and Marc Libault

12.11.3 Transcriptomic profiling of genes and pathways associated with osmotic and salt stress responses in Medicago truncatula 1062
Tianzuo Wang, Xiuxiu Zhang, Min Liu, and Wen-Hao Zhang

12.12 Medicago truncatula proteomics: introduction 1069
Frans J. de Bruijn

12.12.1 Organelle protein changes in arbuscular mycorrhizal Medicago truncatula roots as  deciphered by subcellular proteomics 1070
Ghislaine Recorbet, Christelle Lemaıtre-Guillier, and Daniel Wipf

12.12.2 Leveraging proteome and phosphoproteome to unravel the molecular mechanisms of legume–rhizobia symbiosis 1081
Dhileepkumar Jayaraman, Muthusubramanian Venkateshwaran, and Jean-Michel Ané

12.12.3 Application of bottom-up and top-down proteomics in Medicago spp. 1087
Annelie Gutsch, Kjell Sergeant, and Jenny Renaut

12.12.4 Medicago truncatula: local response of the root nodule proteome to drought stress 1096
Esther M. Gonzalez, Stefanie Wienkoop, Christiana Staudinger, David Lyon, and Erena Gil-Quintana

12.12.5 Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress 1102
Ruicai Long, Mingna Li, Tiejun Zhang, Junmei Kang, Yan Sun, and Qingchuan Yang

12.13 Medicago truncatula metabolomics: introduction 1112
Frans J. de Bruijn

12.13.1 Multifaceted investigation of metabolites during nitrogen fixation in Medicago truncatula via high resolution MALDI-MS imaging and ESI-MS 1113
Erin Gemperline, Caitlin Keller, and Lingjun Li

Section 13: Medicago truncatula databases and computer programs 1121

13.1 MTGD: the Medicago truncatula genome database 1123
Vivek Krishnakumar

13.2 Transcriptional factor databases for legume plants 1131
Quang Ong, Van-Anh Le, Nguyen Phuong Thao, and Lam-Son Phan Tran

13.3 Plant Omics Data Center and CATchUP: web databases for effective gene mining utilizing public RNA-Seq-based transcriptome data 1137
Matt Shenton, Toru Kudo, Masaaki Kobayashi, Yukino Nakamura, Hajime Ohyanagi, and Kentaro Yano

Section 14: Medicago truncatula and transformation 1147

14.1 Recent advances in Medicago spp. genetic engineering strategies 1149
Massimo Confalonieri and Francesca Sparvoli

14.2 Agrobacterium tumefaciens transformation of Medicago truncatula cell suspensions 1162
Anelia Iantcheva and Miglena Revalska

14.3 The Jemalong 2HA line used for Medicago truncatula transformation: hormonology and epigenetics 1170
Ray J. Rose and Youhong Song

14.4 Creation of composite plants – transformation of Medicago truncatula roots 1179
Bettina Hause and Heena Yadav

Index 1185

Note: Product cover images may vary from those shown
Frans J. de Bruijn
Note: Product cover images may vary from those shown