+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Green Sustainable Process for Chemical and Environmental Engineering and Science. Sonochemical Organic Synthesis

  • Book

  • June 2020
  • Elsevier Science and Technology
  • ID: 5342262

Green Sustainable Process for Chemical and Environmental Engineering and Science: Sonochemical Organic Synthesis focuses on purification and extraction of organic, biological, and medicinal compounds using sonochemistry. It provides readers with an understanding of green ultrasound-assisted chemical synthesis for industrial applications. This book systematically explores the application of ultrasound in organic synthesis of all types and includes stereoselectivity, regioselectivity, oxidations, reductions, protection, deprotection, additions, condensation, coupling, C-X bond formation, named reactions, heterocyclics, biological drugs, and fluoroorganics over conventional techniques. A brief introduction to the parameters which influence the process, solvent-effects, supported reagents and catalysis and the pros and cons to the practical use of sonochemical protocols in organic synthesis are also discussed. This book provides overview on the applications of sonochemical technology for the sustainable and environmentally friendly development of synthetic methodologies for organic and pharmaceutical chemistry. Sonochemical Organic Synthesis is an essential resource on green chemistry technologies for academic researchers, R&D professionals, and students working in modern organic chemistry and medicinal chemistry.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Introduction, activities and advantages of sonochemical protocol in organic synthesis
2. Sonochemical protocol for oxidation reactions
3. Sonochemical protocol for reduction reactions
4. Sonochemical protocol for protection and deprotection reactions
5. Sonochemical protocol for stereoselective organic synthesis
6. Sonochemical protocol for stereospecific organic synthesis
7. Sonochemical protocol for addition-type reactions (Michel, Aldol, etc.)
8. Sonochemical protocol for condensation reactions
9. Sonochemical protocol for alkylation reactions
10. Sonochemical protocol for phenolic compounds synthesis
11. Sonochemical protocol for Grignard reactions
12. Sonochemical protocol for aqueous vs biphasic organic synthesis
13. Sonochemical protocol for fluoroorganics
14. Sonochemical protocol for heterocyclics
15. Sonochemical protocol for biological-active organic synthesis
16. Sonochemical protocol for catalyst-free organic synthesis
17. Sonochemical protocol for solvent-free organic synthesis
18. Sonocatalysis for organic synthesis
19. Sonochemical protocol for multi-component reactions
20. Sonochemical protocol for C-H activation reactions
21. Sonochemical protocol for C-N formation reactions
22. Sonochemical protocol for coupling reactions
23. Sonochemical protocol for bio-fuel production
24. Sonochemical protocol of polymer synthesis
25. Sonochemical protocol for functionalized carbon synthesis
26. State of the art and perspectives of sonochemical protocol in organic synthesis

Authors

Rajender Boddula CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, National Center for Nanoscience and Technology, China. Dr. Rajender Boddula is currently working as CAS-PIFI Fellow in the CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China. He has published many scientific articles in international peer-reviewed journals and has authored nine book chapters, and also serving as editorial board member and referee for reputed international peer-reviewed journals. His specialized areas of energy conversion and storage technologies, which include nanomaterials, graphene, polymer composites, heterogeneous catalysis, photoelectrocatalytic water splitting, biofuel cell, and supercapacitor applications Abdullah M. Asiri Chemistry Department, Center of Excellence for Advanced Materials Research, King Abdulaziz University,
Jeddah, Saudi Arabia. Prof. Abdullah M. Asiri is the Head of the Chemistry Department at King Abdulaziz University since October 2009 and he is the founder and the Director of the Center of Excellence for Advanced Materials Research (CEAMR) since 2010 till date. He is the Professor of Organic Photochemistry. His research interest covers color chemistry, synthesis of novel photochromic and thermochromic systems, synthesis of novel coloring matters and dyeing of textiles, materials chemistry, nanochemistry and nanotechnology, polymers and plastics. A major achievement of Prof. Asiri is the discovery of tribochromic compounds, a class of compounds which change from slightly or colorless to deep colored when subjected to small pressure or when grind. This discovery was introduced to the scientific community as a new terminology published by IUPAC in 2000. This discovery was awarded a patent from European Patent office and from UK patent. He is also a member of the Editorial Board of various journals of international repute. He is the Vice- President of Saudi Chemical Society (Western Province Branch). He holds four USA patents, more than 800 Publications in international journals, seven book chapters, and ten books Inamuddin Assistant Professor, Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. Inamuddin is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of awards, including the Fast-Track Young Scientist Award and the Young Researcher of the Year Award 2020 of the university. He has published about 189 research articles in various international scientific journals, 18 book chapters, and 144 edited books with multiple well-known publishers. His current research interests include ion exchange materials, a sensor for heavy metal ions, biofuel cells, supercapacitors, and bending actuators.