+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Automotive Vacuumless Braking Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2021-2031

  • PDF Icon

    Report

  • 180 Pages
  • January 2026
  • Region: Global
  • TechSci Research
  • ID: 6054511
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Global Automotive Vacuumless Braking Market is projected to expand from a valuation of USD 6.11 Billion in 2025 to USD 8.53 Billion by 2031, registering a CAGR of 5.72%. This market comprises electro-mechanical systems that employ electric motors to generate hydraulic brake pressure, effectively removing the need for traditional internal combustion engine vacuum boosters. Key factors driving this market include the rapid electrification of global vehicle fleets, which demands independent braking sources, and strict safety regulations that mandate rapid pressure modulation for automatic emergency braking. Additionally, the ability of these systems to optimize energy recovery during regenerative braking makes them critical for meeting contemporary fuel efficiency and driving range standards.

Conversely, a major obstacle impeding widespread market growth is the high cost of components coupled with the technical complexity required to guarantee absolute fail-safe redundancy. These financial and technical hurdles often restrict immediate adoption within cost-conscious vehicle segments. The trajectory of this technology is closely tied to the surge in electrified platforms. Data from the China Association of Automobile Manufacturers (CAAM) indicates that in 2024, the production and sales of new energy vehicles surpassed 12 million units, representing 40.9 percent of the total new vehicle trade.

Market Drivers

The rapid global adoption of Electric Vehicles acts as the primary catalyst for the Global Automotive Vacuumless Braking Market, fundamentally requiring a shift from conventional vacuum-based systems to electro-mechanical solutions. Since electric powertrains lack the internal combustion vacuum source historically used for boosting, manufacturers must integrate independent braking technologies to maintain consistent safety standards. This technical necessity is driving high installation rates as electrification targets broaden across key regions. As reported by the European Automobile Manufacturers’ Association in their "New car registrations: +1.4% in November 2025" report published in December 2025, battery-electric cars achieved a cumulative market share of 16.9 percent for the year-to-date, creating a direct production demand for compatible vacuumless architectures.

Simultaneously, the industry transition toward Brake-by-Wire Architectures is reshaping the market by separating the brake pedal from hydraulic connections, allowing for advanced software-defined capabilities. These wire-based systems eliminate heavy vacuum pumps and support superior integration with autonomous driving functions through rapid, electronically controlled pressure modulation. Highlighting this trend, ZF announced in a January 2025 press release titled "ZF wins contract to supply brake-by-wire technology" that it had secured a commercial agreement to equip nearly 5 million vehicles with its electro-mechanical braking system. Reflecting the broader momentum in this sector, Continental AG reported in 2025 that its Automotive group sector achieved an order intake of 5.7 billion euros in the second quarter alone, with advanced brake systems contributing significantly to this volume.

Market Challenges

The substantial cost of electro-mechanical components and the technical complexity needed for absolute fail-safe redundancy pose a significant barrier to the expansion of the Global Automotive Vacuumless Braking Market. These sophisticated braking systems rely on expensive sensors, high-speed electric motors, and advanced control units, resulting in a notably higher bill of materials compared to traditional vacuum boosters. Consequently, automotive manufacturers are compelled to restrict the integration of these technologies to premium vehicle segments, preventing their widespread adoption in cost-sensitive entry-level and mid-range models. This price sensitivity directly hampers market growth, as mass-market volume is essential for achieving the economies of scale necessary to reduce unit costs and justify engineering investments.

This financial strain is further intensified by the severe economic pressure currently affecting the automotive supply chain, which limits the liquidity available for developing such complex safety-critical systems. Suppliers are increasingly forced to scale back on capital-intensive projects due to shrinking margins, stalling the innovation required to make these systems more affordable. According to the European Association of Automotive Suppliers (CLEPA), capital investment in electric vehicle components across the European Union dropped to €5.64 billion in 2024, marking the lowest level since 2019. This sharp decline in investment underscores the challenges suppliers face in sustaining the high development costs associated with next-generation technologies, thereby slowing the broader market penetration of vacuumless braking solutions.

Market Trends

The transition toward One-Box Integrated Brake Systems is revolutionizing the market by consolidating the master cylinder, vacuum booster, and electronic stability control into a single compact unit. This architectural consolidation separates the brake pedal from the hydraulic system, enabling maximum regenerative braking efficiency - essential for electric vehicles - while significantly reducing vehicle weight and assembly complexity. The rapid adoption of these integrated electro-hydraulic solutions is evident in the robust financial performance of key manufacturers, particularly within the booming Chinese electric vehicle sector. According to Bethel Automotive Safety Systems' "2024 Annual Report" released in April 2025, the company reported annual revenue of 9.94 billion CNY, a substantial figure driven largely by the mass deployment of its wire-controlled integrated braking systems across multiple new energy vehicle platforms.

At the same time, the emergence of Dry Electro-Mechanical Brake-by-Wire Technology represents the next evolutionary step, eliminating hydraulic fluid entirely to create a "dry" system that simplifies maintenance and enhances environmental sustainability. These systems utilize electric motors directly at the wheel calipers to generate clamping force, offering faster response times and superior integration with autonomous driving software compared to traditional hydraulic setups. This technological shift is generating significant commercial interest as automakers transition toward software-defined vehicle architectures that require modular chassis components. As noted by Continental AG in their August 2025 press release "Continental Continues Solid Development and Further Improves Automotive Earnings," the Automotive group sector secured orders exceeding 3 billion euros in the second quarter alone for advanced technologies, including future brake systems and electronic control units, validating the strong market demand for these innovative solutions.

Key Players Profiled in the Automotive Vacuumless Braking Market

  • Robert Bosch GmbH
  • Continental AG
  • Brembo S.p.A
  • AKEBONO BRAKE INDUSTRY CO., LTD.
  • Hitachi Astemo, Ltd.
  • KSR International Inc.
  • Knorr Bremse AG
  • AISIN CORPORATION
  • ZF Friedrichshafen AG
  • Veoneer HoldCo, LLC.

Report Scope

In this report, the Global Automotive Vacuumless Braking Market has been segmented into the following categories:

Automotive Vacuumless Braking Market, by Vehicle Type:

  • Passenger Cars
  • Commercial Vehicles

Automotive Vacuumless Braking Market, by Propulsion,:

  • Battery Electric Vehicle
  • Plug-In Hybrid Electric Vehicle
  • Other Vehicles

Automotive Vacuumless Braking Market, by Sales Channel:

  • OEMs Aftermarket

Automotive Vacuumless Braking Market, by Region:

  • North America
  • Europe
  • Asia-Pacific
  • South America
  • Middle East & Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automotive Vacuumless Braking Market.

Available Customization

The analyst offers customization according to your specific needs. The following customization options are available for the report:
  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Voice of Customer
5. Global Automotive Vacuumless Braking Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Vehicle Type (Passenger Cars, Commercial Vehicles)
5.2.2. By Propulsion, (Battery Electric Vehicle, Plug-In Hybrid Electric Vehicle, Other Vehicles)
5.2.3. By Sales Channel (OEMs Aftermarket)
5.2.4. By Region
5.2.5. By Company (2025)
5.3. Market Map
6. North America Automotive Vacuumless Braking Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Vehicle Type
6.2.2. By Propulsion
6.2.3. By Sales Channel
6.2.4. By Country
6.3. North America: Country Analysis
6.3.1. United States Automotive Vacuumless Braking Market Outlook
6.3.2. Canada Automotive Vacuumless Braking Market Outlook
6.3.3. Mexico Automotive Vacuumless Braking Market Outlook
7. Europe Automotive Vacuumless Braking Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Vehicle Type
7.2.2. By Propulsion
7.2.3. By Sales Channel
7.2.4. By Country
7.3. Europe: Country Analysis
7.3.1. Germany Automotive Vacuumless Braking Market Outlook
7.3.2. France Automotive Vacuumless Braking Market Outlook
7.3.3. United Kingdom Automotive Vacuumless Braking Market Outlook
7.3.4. Italy Automotive Vacuumless Braking Market Outlook
7.3.5. Spain Automotive Vacuumless Braking Market Outlook
8. Asia-Pacific Automotive Vacuumless Braking Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Vehicle Type
8.2.2. By Propulsion
8.2.3. By Sales Channel
8.2.4. By Country
8.3. Asia-Pacific: Country Analysis
8.3.1. China Automotive Vacuumless Braking Market Outlook
8.3.2. India Automotive Vacuumless Braking Market Outlook
8.3.3. Japan Automotive Vacuumless Braking Market Outlook
8.3.4. South Korea Automotive Vacuumless Braking Market Outlook
8.3.5. Australia Automotive Vacuumless Braking Market Outlook
9. Middle East & Africa Automotive Vacuumless Braking Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Vehicle Type
9.2.2. By Propulsion
9.2.3. By Sales Channel
9.2.4. By Country
9.3. Middle East & Africa: Country Analysis
9.3.1. Saudi Arabia Automotive Vacuumless Braking Market Outlook
9.3.2. UAE Automotive Vacuumless Braking Market Outlook
9.3.3. South Africa Automotive Vacuumless Braking Market Outlook
10. South America Automotive Vacuumless Braking Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Vehicle Type
10.2.2. By Propulsion
10.2.3. By Sales Channel
10.2.4. By Country
10.3. South America: Country Analysis
10.3.1. Brazil Automotive Vacuumless Braking Market Outlook
10.3.2. Colombia Automotive Vacuumless Braking Market Outlook
10.3.3. Argentina Automotive Vacuumless Braking Market Outlook
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
12.1. Mergers & Acquisitions (If Any)
12.2. Product Launches (If Any)
12.3. Recent Developments
13. Global Automotive Vacuumless Braking Market: SWOT Analysis
14. Porter's Five Forces Analysis
14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Products
15. Competitive Landscape
15.1. Robert Bosch GmbH
15.1.1. Business Overview
15.1.2. Products & Services
15.1.3. Recent Developments
15.1.4. Key Personnel
15.1.5. SWOT Analysis
15.2. Continental AG
15.3. Brembo S.p.A
15.4. AKEBONO BRAKE INDUSTRY CO., LTD.
15.5. Hitachi Astemo, Ltd.
15.6. KSR International Inc.
15.7. Knorr Bremse AG
15.8. AISIN CORPORATION
15.9. ZF Friedrichshafen AG
15.10. Veoneer HoldCo, LLC.
16. Strategic Recommendations

Companies Mentioned

The key players profiled in this Automotive Vacuumless Braking market report include:
  • Robert Bosch GmbH
  • Continental AG
  • Brembo S.p.A
  • AKEBONO BRAKE INDUSTRY CO., LTD.
  • Hitachi Astemo, Ltd.
  • KSR International Inc.
  • Knorr Bremse AG
  • AISIN CORPORATION
  • ZF Friedrichshafen AG
  • Veoneer HoldCo, LLC.

Table Information