The Global Aerospace Forging Materials Market was valued at USD 12.8 billion in 2024 and is estimated to grow at a CAGR of 5.8% to reach USD 22.2 billion by 2034. This growth is primarily influenced by the industry's increasing focus on material performance and durability. Aerospace components operate under extreme conditions such as high pressure, intense heat, and significant mechanical stress, demanding materials that exhibit exceptional fatigue resistance, mechanical strength, and longevity. As a result, forged materials are gaining widespread adoption due to their reliability and structural integrity in critical aerospace functions. Unlike cast or machined parts, forged components are less prone to defects and deliver enhanced metallurgical properties, making them ideal for high-risk applications across the aerospace sector.
Demand is also rising as the industry leans toward lighter, more efficient aircraft to improve fuel economy and reduce carbon emissions. Reducing aircraft weight directly contributes to lower fuel consumption and aligns with global sustainability objectives. This shift has increased the adoption of advanced metal alloys in aerospace forging, particularly those known for their high strength-to-weight ratios. Metals like titanium and aluminum are becoming the go-to options, thanks to their ability to deliver lightweight solutions without compromising strength or performance. These trends highlight the broader shift toward material innovation and efficiency in aviation manufacturing.
In 2024, the aerospace forging materials market was segmented by material into aluminum alloys, titanium alloys, steel alloys, magnesium alloys, nickel-based alloys, and others. Titanium alloys held the largest share, accounting for 33.2% of the market, owing to their excellent combination of strength, corrosion resistance, and lightweight characteristics. Their ability to endure extreme environments makes them especially suitable for aerospace structures and engine systems. Aluminum alloys are widely favored for their cost-efficiency and ease of formability, especially in airframe structures. Although heavier, steel alloys remain essential in high-load areas where strength and fatigue resistance are critical.
Based on forging techniques, the market in 2024 was classified into closed die forging, roll forging, open die forging, precision forging, and others. Closed die forging led the segment with a 45.4% market share due to its precision, dimensional stability, and efficiency in producing complex aerospace components. This method is especially valued for its ability to produce high-strength parts with consistent repeatability. Open die forging followed as a significant segment, especially for producing large, heavy-duty components that require high mechanical integrity. Roll forging, with its controlled grain flow, is typically used for manufacturing long, flat parts. Precision forging continues to gain traction among manufacturers for its ability to reduce raw material waste and minimize machining requirements.
In terms of applications, the market was segmented in 2024 into engine components, airframe components, transmission and rotor components, landing gear components, control surfaces, and others. Airframe components accounted for the largest share at 32.5%, driven by the widespread use of forged materials in structural parts such as fuselage frames, spars, and bulkheads. Engine components also represent a significant portion, given the demand for high-stress, high-temperature-resistant parts. Forged components are vital in ensuring durability and performance under harsh operating conditions. Landing gear components, which must endure repetitive impact and stress, typically rely on steel and titanium forging to ensure long-term reliability.
The United States captured a notable share of the global aerospace forging materials market, holding 17.8% in 2024. This equated to USD 2.3 billion and is projected to rise to USD 4.1 billion by 2034. The U.S. aerospace sector plays a vital role in the country's economy, encompassing commercial aviation and aircraft manufacturing. With a workforce of over 600,000 professionals and substantial contributions to the national GDP, the industry supports continuous innovation and global competitiveness.
Leading companies shaping the competitive landscape include Arconic Corporation, Precision Castparts Corp., Allegheny Technologies Incorporated (ATI), Bharat Forge Limited, KOBE STEEL, LTD., VSMPO-AVISMA Corporation, and Nippon Steel Corporation. These players employ diverse strategies, including technological advancements, global expansions, and strategic partnerships, to maintain and strengthen their market positions.
This product will be delivered within 2-4 business days.
Demand is also rising as the industry leans toward lighter, more efficient aircraft to improve fuel economy and reduce carbon emissions. Reducing aircraft weight directly contributes to lower fuel consumption and aligns with global sustainability objectives. This shift has increased the adoption of advanced metal alloys in aerospace forging, particularly those known for their high strength-to-weight ratios. Metals like titanium and aluminum are becoming the go-to options, thanks to their ability to deliver lightweight solutions without compromising strength or performance. These trends highlight the broader shift toward material innovation and efficiency in aviation manufacturing.
In 2024, the aerospace forging materials market was segmented by material into aluminum alloys, titanium alloys, steel alloys, magnesium alloys, nickel-based alloys, and others. Titanium alloys held the largest share, accounting for 33.2% of the market, owing to their excellent combination of strength, corrosion resistance, and lightweight characteristics. Their ability to endure extreme environments makes them especially suitable for aerospace structures and engine systems. Aluminum alloys are widely favored for their cost-efficiency and ease of formability, especially in airframe structures. Although heavier, steel alloys remain essential in high-load areas where strength and fatigue resistance are critical.
Based on forging techniques, the market in 2024 was classified into closed die forging, roll forging, open die forging, precision forging, and others. Closed die forging led the segment with a 45.4% market share due to its precision, dimensional stability, and efficiency in producing complex aerospace components. This method is especially valued for its ability to produce high-strength parts with consistent repeatability. Open die forging followed as a significant segment, especially for producing large, heavy-duty components that require high mechanical integrity. Roll forging, with its controlled grain flow, is typically used for manufacturing long, flat parts. Precision forging continues to gain traction among manufacturers for its ability to reduce raw material waste and minimize machining requirements.
In terms of applications, the market was segmented in 2024 into engine components, airframe components, transmission and rotor components, landing gear components, control surfaces, and others. Airframe components accounted for the largest share at 32.5%, driven by the widespread use of forged materials in structural parts such as fuselage frames, spars, and bulkheads. Engine components also represent a significant portion, given the demand for high-stress, high-temperature-resistant parts. Forged components are vital in ensuring durability and performance under harsh operating conditions. Landing gear components, which must endure repetitive impact and stress, typically rely on steel and titanium forging to ensure long-term reliability.
The United States captured a notable share of the global aerospace forging materials market, holding 17.8% in 2024. This equated to USD 2.3 billion and is projected to rise to USD 4.1 billion by 2034. The U.S. aerospace sector plays a vital role in the country's economy, encompassing commercial aviation and aircraft manufacturing. With a workforce of over 600,000 professionals and substantial contributions to the national GDP, the industry supports continuous innovation and global competitiveness.
Leading companies shaping the competitive landscape include Arconic Corporation, Precision Castparts Corp., Allegheny Technologies Incorporated (ATI), Bharat Forge Limited, KOBE STEEL, LTD., VSMPO-AVISMA Corporation, and Nippon Steel Corporation. These players employ diverse strategies, including technological advancements, global expansions, and strategic partnerships, to maintain and strengthen their market positions.
Comprehensive Market Analysis and Forecast
- Industry trends, key growth drivers, challenges, future opportunities, and regulatory landscape
- Competitive landscape with Porter’s Five Forces and PESTEL analysis
- Market size, segmentation, and regional forecasts
- In-depth company profiles, business strategies, financial insights, and SWOT analysis
This product will be delivered within 2-4 business days.
Table of Contents
Chapter 1 Methodology & Scope
Chapter 2 Executive Summary
Chapter 3 Industry Insights
Chapter 4 Competitive Landscape, 2024
Chapter 5 Market Estimates and Forecast, by Material Type, 2021-2034 (USD Billion) (Kilo Tons)
Chapter 6 Market Estimates and Forecast, by Forging Technique, 2021-2034 (USD Billion) (Kilo Tons)
Chapter 7 Market Estimates and Forecast, by Application, 2021-2034 (USD Billion) (Kilo Tons)
Chapter 8 Market Estimates and Forecast, by Region, 2021-2034 (USD Billion) (Kilo Tons)
Chapter 9 Company Profiles
Companies Mentioned
The companies featured in this aerospace forging materials market report include:- Alcoa
- Allegheny Technologies Incorporated (ATI)
- Arconic Corporation
- Barry A. Dorfman & Co.
- Bergsen Metals
- Bharat Forge Limited
- Forgital Group
- KOBE STEEL, LTD.
- Nippon Steel Corporation
- Plymouth Tube Company
- Precision Castparts Corp.
- Reliance Steel & Aluminum Co.
- Rickard Specialty Metals Supply & Engineering
- VSMPO-AVISMA Corporation
- Weldaloy Specialty Forgings Company
Table Information
Report Attribute | Details |
---|---|
No. of Pages | 170 |
Published | April 2025 |
Forecast Period | 2024 - 2034 |
Estimated Market Value ( USD | $ 12.8 Billion |
Forecasted Market Value ( USD | $ 22.2 Billion |
Compound Annual Growth Rate | 5.8% |
Regions Covered | Global |
No. of Companies Mentioned | 16 |