The additive manufacturing for rocket engines market size is expected to see rapid growth in the next few years. It will grow to $6.11 billion in 2030 at a compound annual growth rate (CAGR) of 17.8%. The growth in the forecast period can be attributed to increasing investment in next-generation rocket programs, expansion of 3D printing capabilities for complex engine geometries, growing emphasis on performance optimization and weight reduction, adoption of additive manufacturing by commercial space companies, integration of digital design and simulation tools to enhance manufacturing efficiency. Major trends in the forecast period include growing demand for additive manufacturing to reduce engine part weight, increasing adoption of am for rapid prototyping of rocket components, rising use of complex geometries to improve propulsion efficiency, expansion of reusable launch vehicle programs requiring am parts, higher reliance on high-performance alloys for extreme thermal loads.
The rising demand for commercial space launch services is expected to drive the growth of the additive manufacturing for rocket engines market going forward. Commercial space launch services involve privately offered rocket launches that deliver satellites, cargo, or crew into space for various clients, providing cost-effective and reliable alternatives to government-operated launches. This demand is fueled by increased private sector investment in satellite-based communication and Earth observation, leading companies to plan more frequent missions. Additive manufacturing for rocket engines supports commercial space launch services by enabling the creation of lightweight, complex components, enhancing engine performance and fuel efficiency. It also reduces production time and costs, speeding up launch schedules and improving overall mission reliability. For example, in November 2024, the Federal Aviation Administration, a US federal agency, reported that commercial space operations grew by over 30% in 2023 to reach 148 launches, with projections indicating this number will more than double by 2028. Thus, the increasing demand for commercial space launch services is fueling the growth of the additive manufacturing for rocket engines market.
Leading companies in the additive manufacturing for rocket engines market are focusing on advancing technologies such as 3D printing additive manufacturing systems to improve production scalability, cut costs, and boost performance of rocket engine components. These 3D printing systems build parts layer by layer from digital designs, enabling complex, efficient, and rapid manufacturing. For instance, in June 2025, Innospace, a South Korea-based aerospace and defense company, launched an advanced in-house 3D printing division dedicated to manufacturing rocket engines and key components for its space launch vehicles using proprietary metal additive manufacturing technology. This initiative is expected to enhance competitiveness by enabling faster, more precise, and cost-effective production, potentially reducing manufacturing costs by up to 50% compared to traditional methods. The division manages all production stages, from design to quality verification, and has already produced 13 critical parts, including oxidizer pumps for the HANBIT launch vehicle.
In July 2023, L3Harris Technologies Inc., a US-based aerospace and defense technology firm, acquired Aerojet Rocketdyne Holdings Inc. for $4.7 billion. Through this acquisition, L3Harris aims to strengthen its propulsion capabilities by incorporating Aerojet Rocketdyne’s expertise in rocket engines and energetics, bolstering its position in missile defense, hypersonics, and space propulsion. Aerojet Rocketdyne Holdings Inc., a US aerospace and defense company, utilizes additive manufacturing to enhance rocket engine performance, reduce costs, and speed up production.
Major companies operating in the additive manufacturing for rocket engines market are Northrop Grumman Corporation, General Electric Company, L3Harris Technologies Inc., TRUMPF SE + Co. KG, Space Exploration Technologies Corp., Blue Origin Enterprises L.P., DMG MORI Aktiengesellschaft, United Launch Alliance LLC (ULA), RUAG Holding AG, Sierra Space Corporation, Rocket Lab USA Inc., Firefly Aerospace Inc., MT Aerospace AG, Velo3D Inc., Gilmour Space Technologies Pty Ltd., Ursa Major Technologies Inc., Orbex Ltd., Sintavia LLC, Vast Space Corp., EOS GmbH, Equatorial Space Systems Pty Ltd., Skyrora Ltd.
North America was the largest region in the additive manufacturing for rocket engines market in 2025. Asia-Pacific is expected to be the fastest-growing region in the forecast period. The regions covered in the additive manufacturing for rocket engines market report are Asia-Pacific, South East Asia, Western Europe, Eastern Europe, North America, South America, Middle East, Africa.
Note that the outlook for this market is being affected by rapid changes in trade relations and tariffs globally. The report will be updated prior to delivery to reflect the latest status, including revised forecasts and quantified impact analysis. The report’s Recommendations and Conclusions sections will be updated to give strategies for entities dealing with the fast-moving international environment.
Tariffs on metal powders, advanced 3D printing equipment, and high-performance alloys have raised production costs in the additive manufacturing for rocket engines market, particularly impacting aerospace and defense manufacturers reliant on imported superalloys and precision machinery. North America and Europe face significant delays due to restricted supply flows, while Asia-Pacific’s AM supply chain experiences cost pressures. However, tariffs are also encouraging domestic material production, local printer manufacturing, and long-term investments in regional additive manufacturing ecosystems, strengthening supply resilience.
The additive manufacturing for rocket engines market research report is one of a series of new reports that provides additive manufacturing for rocket engines market statistics, including additive manufacturing for rocket engines industry global market size, regional shares, competitors with an additive manufacturing for rocket engines market share, detailed additive manufacturing for rocket engines market segments, market trends and opportunities, and any further data you may need to thrive in the additive manufacturing for rocket engines industry. This additive manufacturing for rocket engines market research report delivers a complete perspective of everything you need, with an in-depth analysis of the current and future scenario of the industry.
Additive manufacturing for rocket engines refers to the technique of producing intricate engine components by layering metal powders or other materials using 3D printing technologies. This method allows for the fabrication of complex geometries that are challenging or unfeasible with traditional manufacturing processes. The primary goal is to reduce production time, cost, and weight while enhancing performance and design flexibility.
The main materials used in additive manufacturing for rocket engines include metals, polymers, ceramics, and others. Metals used in this process consist of powders or wires that are fused layer by layer to create engine parts. This technique employs various technologies such as selective laser melting, electron beam melting, fused deposition modeling, among others. It supports diverse applications including prototyping, production, and research and development (R&D), serving key end users like aerospace, defense, and others.
The countries covered in the additive manufacturing for rocket engines market report are Australia, Brazil, China, France, Germany, India, Indonesia, Japan, Taiwan, Russia, South Korea, UK, USA, Canada, Italy, Spain.
The additive manufacturing for rocket engines market consists of sales of 3D-printed combustion chambers, 3D-printed injector heads, additively manufactured turbopump components, 3D-printed nozzles, lightweight structural components, and 3D-printed fuel manifolds. Values in this market are ‘factory gate’ values, that is the value of goods sold by the manufacturers or creators of the goods, whether to other entities (including downstream manufacturers, wholesalers, distributors and retailers) or directly to end customers. The value of goods in this market includes related services sold by the creators of the goods.
The market value is defined as the revenues that enterprises gain from the sale of goods and/or services within the specified market and geography through sales, grants, or donations in terms of the currency (in USD unless otherwise specified).
The revenues for a specified geography are consumption values that are revenues generated by organizations in the specified geography within the market, irrespective of where they are produced. It does not include revenues from resales along the supply chain, either further along the supply chain or as part of other products.
This product will be delivered within 1-3 business days.
Table of Contents
Executive Summary
Additive Manufacturing For Rocket Engines Market Global Report 2026 provides strategists, marketers and senior management with the critical information they need to assess the market.This report focuses additive manufacturing for rocket engines market which is experiencing strong growth. The report gives a guide to the trends which will be shaping the market over the next ten years and beyond.
Reasons to Purchase:
- Gain a truly global perspective with the most comprehensive report available on this market covering 16 geographies.
- Assess the impact of key macro factors such as geopolitical conflicts, trade policies and tariffs, inflation and interest rate fluctuations, and evolving regulatory landscapes.
- Create regional and country strategies on the basis of local data and analysis.
- Identify growth segments for investment.
- Outperform competitors using forecast data and the drivers and trends shaping the market.
- Understand customers based on end user analysis.
- Benchmark performance against key competitors based on market share, innovation, and brand strength.
- Evaluate the total addressable market (TAM) and market attractiveness scoring to measure market potential.
- Suitable for supporting your internal and external presentations with reliable high-quality data and analysis
- Report will be updated with the latest data and delivered to you along with an Excel data sheet for easy data extraction and analysis.
- All data from the report will also be delivered in an excel dashboard format.
Description
Where is the largest and fastest growing market for additive manufacturing for rocket engines? How does the market relate to the overall economy, demography and other similar markets? What forces will shape the market going forward, including technological disruption, regulatory shifts, and changing consumer preferences? The additive manufacturing for rocket engines market global report answers all these questions and many more.The report covers market characteristics, size and growth, segmentation, regional and country breakdowns, total addressable market (TAM), market attractiveness score (MAS), competitive landscape, market shares, company scoring matrix, trends and strategies for this market. It traces the market’s historic and forecast market growth by geography.
- The market characteristics section of the report defines and explains the market. This section also examines key products and services offered in the market, evaluates brand-level differentiation, compares product features, and highlights major innovation and product development trends.
- The supply chain analysis section provides an overview of the entire value chain, including key raw materials, resources, and supplier analysis. It also provides a list competitor at each level of the supply chain.
- The updated trends and strategies section analyses the shape of the market as it evolves and highlights emerging technology trends such as digital transformation, automation, sustainability initiatives, and AI-driven innovation. It suggests how companies can leverage these advancements to strengthen their market position and achieve competitive differentiation.
- The regulatory and investment landscape section provides an overview of the key regulatory frameworks, regularity bodies, associations, and government policies influencing the market. It also examines major investment flows, incentives, and funding trends shaping industry growth and innovation.
- The market size section gives the market size ($b) covering both the historic growth of the market, and forecasting its development.
- The forecasts are made after considering the major factors currently impacting the market. These include the technological advancements such as AI and automation, Russia-Ukraine war, trade tariffs (government-imposed import/export duties), elevated inflation and interest rates.
- The total addressable market (TAM) analysis section defines and estimates the market potential compares it with the current market size, and provides strategic insights and growth opportunities based on this evaluation.
- The market attractiveness scoring section evaluates the market based on a quantitative scoring framework that considers growth potential, competitive dynamics, strategic fit, and risk profile. It also provides interpretive insights and strategic implications for decision-makers.
- Market segmentations break down the market into sub markets.
- The regional and country breakdowns section gives an analysis of the market in each geography and the size of the market by geography and compares their historic and forecast growth.
- Expanded geographical coverage includes Taiwan and Southeast Asia, reflecting recent supply chain realignments and manufacturing shifts in the region. This section analyzes how these markets are becoming increasingly important hubs in the global value chain.
- The competitive landscape chapter gives a description of the competitive nature of the market, market shares, and a description of the leading companies. Key financial deals which have shaped the market in recent years are identified.
- The company scoring matrix section evaluates and ranks leading companies based on a multi-parameter framework that includes market share or revenues, product innovation, and brand recognition.
Report Scope
Markets Covered:
1) By Material Type: Metals; Polymers; Ceramics; Other Material Types2) By Technology: Selective Laser Melting; Electron Beam Melting; Fused Deposition Modeling; Other Technologies
3) By Application: Prototyping; Production; Research and Development (R&D)
4) By End-User: Aerospace; Defense; Other End Users
Subsegments:
1) By Metals: Titanium Alloys; Nickel-Based Superalloys; Stainless Steel; Aluminum Alloys2) By Polymers: High-Performance Thermoplastics; Composite Polymers; Polyamide (Nylon)
3) By Ceramics: Silicon Carbide; Alumina-Based Ceramics; Zirconia-Based Ceramics
4) By Other Material Types: Hybrid Materials; Metal Matrix Composites; Functionally Graded Materials
Companies Mentioned: Northrop Grumman Corporation; General Electric Company; L3Harris Technologies Inc.; TRUMPF SE + Co. KG; Space Exploration Technologies Corp.; Blue Origin Enterprises L.P.; DMG MORI Aktiengesellschaft; United Launch Alliance LLC (ULA); RUAG Holding AG; Sierra Space Corporation; Rocket Lab USA Inc.; Firefly Aerospace Inc.; MT Aerospace AG; Velo3D Inc.; Gilmour Space Technologies Pty Ltd.; Ursa Major Technologies Inc.; Orbex Ltd.; Sintavia LLC; Vast Space Corp.; EOS GmbH; Equatorial Space Systems Pty Ltd.; Skyrora Ltd.
Countries: Australia; Brazil; China; France; Germany; India; Indonesia; Japan; Taiwan; Russia; South Korea; UK; USA; Canada; Italy; Spain
Regions: Asia-Pacific; South East Asia; Western Europe; Eastern Europe; North America; South America; Middle East; Africa
Time Series: Five years historic and ten years forecast.
Data: Ratios of market size and growth to related markets, GDP proportions, expenditure per capita.
Data Segmentation: Country and regional historic and forecast data, market share of competitors, market segments.
Sourcing and Referencing: Data and analysis throughout the report is sourced using end notes.
Delivery Format: Word, PDF or Interactive Report + Excel Dashboard
Added Benefits
- Bi-Annual Data Update
- Customisation
- Expert Consultant Support
Companies Mentioned
The companies featured in this Additive Manufacturing for Rocket Engines market report include:- Northrop Grumman Corporation
- General Electric Company
- L3Harris Technologies Inc.
- TRUMPF SE + Co. KG
- Space Exploration Technologies Corp.
- Blue Origin Enterprises L.P.
- DMG MORI Aktiengesellschaft
- United Launch Alliance LLC (ULA)
- RUAG Holding AG
- Sierra Space Corporation
- Rocket Lab USA Inc.
- Firefly Aerospace Inc.
- MT Aerospace AG
- Velo3D Inc.
- Gilmour Space Technologies Pty Ltd.
- Ursa Major Technologies Inc.
- Orbex Ltd.
- Sintavia LLC
- Vast Space Corp.
- EOS GmbH
- Equatorial Space Systems Pty Ltd.
- Skyrora Ltd.
Table Information
| Report Attribute | Details |
|---|---|
| No. of Pages | 250 |
| Published | January 2026 |
| Forecast Period | 2026 - 2030 |
| Estimated Market Value ( USD | $ 3.17 Billion |
| Forecasted Market Value ( USD | $ 6.11 Billion |
| Compound Annual Growth Rate | 17.8% |
| Regions Covered | Global |
| No. of Companies Mentioned | 23 |


