Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces. Mathematical Analysis and its Applications - Product Image

Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces. Mathematical Analysis and its Applications

  • ID: 4335151
  • Book
  • 418 Pages
  • Elsevier Science and Technology
1 of 4

Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces presents for the first time a unified study of the Lorentz transformation group SO(m, n) of signature (m, n), m, n ? N, which is fully analogous to the Lorentz group SO(1, 3) of Einstein's special theory of relativity. It is based on a novel parametric realization of pseudo-rotations by a vector-like parameter with two orientation parameters. The book is of interest to specialized researchers in the areas of algebra, geometry and mathematical physics, containing new results that suggest further exploration in these areas.

  • Introduces the study of generalized gyrogroups and gyrovector spaces
  • Develops new algebraic structures, bi-gyrogroups and bi-gyrovector spaces
  • Helps readers to surmount boundaries between algebra, geometry and physics
  • Assists readers to parametrize and describe the full set of generalized Lorentz transformations in a geometric way
  • Generalizes approaches from gyrogroups and gyrovector spaces to bi-gyrogroups and bi-gyrovector spaces with geometric entanglement
Note: Product cover images may vary from those shown
2 of 4

1. Lorentz Transformations of signature (m,n) 2. Einstein Bi-gyrogroups of Order (m,n) 3. Einstein Bi-gyrovector Spaces of Order (m,n)

[Further chapters to be determined].

Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
Ungar, Abraham
Abraham Ungar (North Dakota State University, ND) is Professor of Mathematics at North Dakota State University. He specializes in the areas of linear algebra, geometry and physics. He has published seven books and over 100 papers, mostly in indexed journals.
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll