Mitosis and Meiosis Part A, Vol 144. Methods in Cell Biology

  • ID: 4465317
  • Book
  • 494 Pages
  • Elsevier Science and Technology
1 of 3

Mitosis and Meiosis, Part A, Volume 144, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are chapters on Analyzing the Spindle Assembly Checkpoint in human cell culture, an Analysis of CIN, a Functional analysis of the tubulin code in mitosis, Employing CRISPR/Cas9 genome engineering to dissect the molecular requirements for mitosis, Applying the auxin-inducible degradation (AID) system for rapid protein depletion in mammalian cells, Small Molecule Tools in Mitosis Research, Optogenetic control of mitosis with photocaged chemical, and more.

  • Contains contributions from experts in the field from across the world
  • Covers a wide array of topics on both mitosis and meiosis
  • Includes relevant, analysis based topics

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Note: Product cover images may vary from those shown
2 of 3
Preface Helder Maiato and Melina Schuh 1. Assays for the spindle assembly checkpoint in cell culture Chiara Marcozzi and Jonathon Pines 2. Quantitative methods to measure aneuploidy and chromosomal instability Kristina M. Godek and Duane A. Compton 3. Dissecting the role of the tubulin code in mitosis Luísa T. Ferreira, Ana C. Figueiredo, Bernardo Orr, Danilo Lopes and Helder Maiato 4. Employing CRISPR/Cas9 genome engineering to dissect the molecular requirements for mitosis Kara L. McKinley 5. Applying the auxin-inducible degradation system for rapid protein depletion in mammalian cells Bramwell G. Lambrus, Tyler C. Moyer and Andrew J. Holland 6. Small molecule tools in mitosis research Franziska Teusel, Lars Henschke and Thomas U. Mayer 7. Optogenetic control of mitosis with photocaged chemical dimerizers Huaiying Zhang, David M. Chenoweth and Michael A. Lampson 8. Measuring mitotic forces Anna A. Ye and Thomas J. Maresca 9. Employing the one-cell C. elegans embryo to study cell division processes Neil Hattersley, Pablo Lara-Gonzalez, Dhanya Cheerambathur, Sebastian Gomez, Taekyung Kim, Bram Prevo, Renat Khaliullin, Kian-Yong Lee, Midori Ota, Rebecca Green, Karen Oegema and Arshad Desai 10. A cell-free system of Drosophila egg explants supporting native mitotic cycles Jorge de-Carvalho, Ojas Deshpande, Catarina Nabais and Ivo A. Telley 11. Living Xenopus oocytes, eggs, and embryos as models for cell division Ani Varjabedian, Angela Kita and William Bement 12. Spreading of chromosomes from mouse oocytes and mammalian cultured cells for light microscopic analysis Mariana C.C. Silva, Gordana Wutz, Kikuë Tachibana and Jan-Michael Peters 13. In vitro reconstitution of lateral to end-on conversion of kinetochore-microtubule attachments Manas Chakraborty, Ekaterina Tarasovetc and Ekaterina L. Grishchuk 14. Isolation of mitotic chromosomes from vertebrate cells and characterization of their proteome by mass spectrometry Itaru Samejima and William C. Earnshaw 15. Purification of kinetochores from the budding yeast Saccharomyces cerevisiae Amitabha Gupta, Rena K. Evans, Lori B. Koch, Aimee J. Littleton and Sue Biggins 16. Characterization of DNA helicases and nucleases from meiotic extracts of S. cerevisiae Rokas Grigaitis, Aitor Susperregui, Philipp Wild and Joao Matos 17. Single-nucleus Hi-C of mammalian oocytes and zygotes Johanna Gassler, Ilya M. Flyamer and Kikuë Tachibana 18. Induction of fetal primary oocytes and the meiotic prophase from mouse pluripotent stem cells Hidetaka Miyauchi, Hiroshi Ohta and Mitinori Saitou 19. Electrical-assisted microinjection for analysis of fertilization and cell division in mammalian oocytes and early embryos Greg FitzHarris, John Carroll and Karl Swann 20. Single cell genomics to study DNA and chromosome changes in human gametes and embryos Robert C. Blanshard, Chongyi Chen, X. Sunney Xie and Eva R. Hoffmann 21. Cytoplasmic removal, enucleation, and cell fusion of mouse oocytes Hirohisa Kyogoku, Shuhei Yoshida and Tomoya S. Kitajima
Note: Product cover images may vary from those shown
3 of 3

Loading
LOADING...

4 of 3
Note: Product cover images may vary from those shown
Order Online - visit: https://www.researchandmarkets.com/reports/4465317
Adroll
adroll